Tải bản đầy đủ (.ppt) (64 trang)

phuongtrinhbatphuongtrinhmuvalogarit

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (209.98 KB, 64 trang )

<span class='text_page_counter'>(1)</span>ÔN TẬP PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARÍT. Haûi 1.

<span class='text_page_counter'>(2)</span> 2.

<span class='text_page_counter'>(3)</span> 1.y= y=e. -. 1 3 2x 3. e 2x. 2x =>y'=(- )'e 3. -. 2x 3. =-. 2 3 3 e 2x. sin 2 x. 2)y=e 2 sin 2 x 2 2 y'=(sin x)'e =2sinxcosxsin x=sin xsin2x 2. y= (3x-2) 2(3x-2)' 6 y'= 3 = 3 3 3x-2 3 3x-2 3. 3.

<span class='text_page_counter'>(4)</span> Bài 2: Tìm cực tri 1)y=x2ex D=R y’=2xex+x2ex=ex(x2+2x); y’=0x2+2x=0x=0 hoặc x=-2 x - -2 0  y’ + 0 - 0 + y VẤN ĐỀ II: PHƯƠNG TRÌNH,BPT MŨ VA LÔGA RÍT 4.

<span class='text_page_counter'>(5)</span> VẤN ĐỀ II: PHƯƠNG TRÌNH,BPT MŨ VA LÔGA RÍT x 2 -6x-9. Bai 2: Giai 1)(2/3) 2 -2 x 2 -6x-9  (2/3) <( ) 3. <9/4. x2-6x-9>-2( do 0<2/3<1) x2-6x-7>0x<-1 hoặc x>7 2)log2x +log4x + log8x = 11 Đk:x>0 Ptlog2x +(1/2)log2x + (1/3)log2x = 11 (11/6)log2x=11log2x=6x=26x=64 5.

<span class='text_page_counter'>(6)</span> 3)log 2  x- 2  – 2 < 6log1/8 3x-5 ĐK: x>2; khi đó bpt  1 2.  log 2  x- 2  -log 2 2 2 < 6log 2-3 (3x-5) x- 2  log 2 <- log 2 (3x-5) 4 x- 2 x- 2  log 2 (3x-5)<0  (3x-5)<1 4 4 3x2-11x+10<43x2-11x+6<02/3<x<3 So đk ta có: 2<x<3 x. x 2. 2  4 =3 +1x 4)2x =3x/2 +1 x x x 3 2 1 2 3 2 1 2  1=( ) +( )  ( ) +( ) -1=0 4 4 4 4. 6.

<span class='text_page_counter'>(7)</span> x/2 x/2  4 =3 +1 4)2 =3 +1 3 x2 1 x2 3 x2 1 x2  1=( ) +( )  ( ) +( ) -1=0 4 4 4 4 3 x2 1 x2 1 3 x2 3 1 x2 1 hs y=( ) +( ) -1;D=R=>y'= [( ) ln +( ) ln ]<0;x  R 4 4 2 4 4 4 4 x. x/2. =>f(x) giảm trên R; mà f(2)= 1-1=0=>x=2 là ngh duy nhất. 5)9x-1 +3=36.3x-3 (1/9).9x+3=(36/27).3x9x-12.3x+27=03x=9 hoặc 3x=3 x=2 hoặc x=1 6)log2(x-1)-(1/2)log2(x2- 4)=1 Đk:x>2; khi đó pt: 7.

<span class='text_page_counter'>(8)</span> 6)log2(x-1)-(1/2)log2(x2- 4)=1 Đk:x>2; khi đó pt: 2log2(x-1)-log2(x2-4)=2 log2(x-1)2-log2(x2-4)=2 2 (x-1)2 (x-1)  log 2 2 =log 2 2 2  2 =4 x -4 x -4 3x2+2x-17=0  x= -1±2 13 ; so dk => ngh:x= -1+2 13 3 3 7)2.9x-5.6x+3.4x>0 9 x 3 x  2.( ) -5.( ) +3>0  4 2 1 x2 -2x-11 8)( ) <8 2.  3 x  ( 2 ) <1  x<0    x>1  ( 3 )x > 3  2 2 8.

<span class='text_page_counter'>(9)</span> 1 x2 -2x-11 8)( ) <8 2 2  2-x +2x+11 <23 -x2+2x+11<3-x2+2x+8<0x<-2 hoặc x>4 9)49x -7 x+1 +6=0  x=0 x x x x 49 -7.7 +6=07 =1 hoặc 7 =6    x=log 7 6. 11)lgx +1>2lg(x+1). Đk: x>0. Bptlg10x>lg(x+1)2 10x>(x+1)2x2-8x+1<0 12)4x+10x=2.25x 25 x 5 x 5 x 5 x 1  2.( ) -( ) -1=0  ( ) =1 hoac ( ) =- (loai)  x=0 4 2 2 2 2 9.

<span class='text_page_counter'>(10)</span> 13)lg(x-2)+lg(x-3)=1-lg5; đk: x>3. Khi đó pt: lg(x-2)(x-3).5=lg105(x-2)(x-3)=10 5x2-25x+20=0x=1(loại); x=4(nhận) 14)log(x-3)=2-log50; đk: x>3 ; khi đó: pt(x-3)50=log100 50(x-3)=100x=5(nhận) 15)log2(x2-3)-log2(6x-10)+1=0 Đk:x>3; khi đó Pt:log2(x2-3)4=log2(6x-10) 4(x2-3)=6x-104x2-3x-10=0 x=2(nh);x=-5/4(loại) 10.

<span class='text_page_counter'>(11)</span>  5 x 5 ( 2 ) = 2 5 x 25 x  5-7( ) -2( ) =0    2 4  ( 5 )x 1  2 3x 2 18)log1/2 ( -1)=log1/2 (2x -5x+4) 2 16) 5.4x -7.10x+ 2.25x=0.  x=1  x 0 . Đk: 3x/2 -1>0x>2/3; khi đó: Pt3x/2 -1=2x2-5x+4 4x2-13x+10=0x=2(nh) hoặc x=5/4(nh). 19) 9. x 2 +1. x2. -3(3 +4)<0 11.

<span class='text_page_counter'>(12)</span> 19) 9. x 2 +1. x2. -3(3 +4)<0. x2. x2.  9. 9 -3.3 -12<0 4 4 4 4 x2 2  0<3 <  x <log 3  - log 3 <x< log 3 3 3 3 3 20)log1/2(x2 -4x+6) < - 2 x2-4x+6>(1/2)-2x2-4x+2>0.  x<2- 2   x>2+ 2 21)4x+3/2+9x =6x+1 12.

<span class='text_page_counter'>(13)</span> 21)4x+3/2+9x =6x+1 8.4x+9x -6.6x=0 9 x 3 x 3 x   8+( ) -6.( ) =0 ( ) 4  4 2 2  22)(1/2)2x -x-10 >16  ( 3 ) x 2 1 2x -x-10 1 -4   2 ( ) >( ) 2 2 2x2-x-10<-42x2-x-6<0-3/2<x<2 2. 2. 23)log2(x -3)- log1/2(x-1) < 3. 13.

<span class='text_page_counter'>(14)</span> 23)log2(x -3)- log1/2(x-1) < 3 log2(x -3)+ log2(x-1) <log223;ñk: x>3 log2(x -3)(x-1)< log1/28 (x-3)(x-1)<8x2-4x-5<0-1<x<5 So dk ta co: 3<x<5 |x 2 -x|. 24)1<5. 25. 2.  x -x  0 2 |x -x|>0  2  2  x -x 2 |x -x| 2 x 2 -x  2 . 14.

<span class='text_page_counter'>(15)</span> |x 2 -x|. 24)1<5. 25. 2.  x -x  0 2 |x -x|>0  2  2  x -x 2  |x -x| 2 x 2 -x  2  x 0 va x 1  -1  x 2. x 0 va x 1  2 x -x-2 0 x 2 -x+2 0(dung ) . 25)lg2x – lgx2 = lg23 – 1 lg2x –2lgx = lg23 – 1;x>0 15.

<span class='text_page_counter'>(16)</span> 26)52x+1 > 5x +4  x 4 5 <- (loai)  2x x  x>0 5.5 -5 -4>0 5  x  5 >1. 27)2log8(x- 2) + log1/8( 2x – 7) > 2/3 đk:x>7/2 Bptlog8(x- 2)2 – log8( 2x–7)>2/3 2 2 (x-2)2 2 (x-2)  log 8 >  >8 3 2x-7 3 2x-7. x2-12x+32>0x<4 hoặc x>8 So với đk ta có: 7/2<x<4 hoặc x>8 16.

<span class='text_page_counter'>(17)</span> 28)log1/32x – 2log1/3x -3 >0 Đk:x>0  log1/3 x<-1 bpt     log1/3 x>3.  x>3  0<x<1/27 . 29)32x+3 – 4.3x+1 + 1 = 0  x 1 3 = 3  27.32x-12.3x+1=0    3x = 1  9 30)log2[log1/2(x2 -2)]<1 Đk: log1/2(x2-2)>0; khi đó bpt:.  x=-1  x=-2 . 17.

<span class='text_page_counter'>(18)</span> 30)log2[log1/2(x2 -2)]<1 Đk: log1/2(x2-2)>0; khi đó bpt: log 1 (x 2 -2)>0  2  2 log (x  1 -2)<2  2 x 2 -2<1 x 2 -3<0  2   x -2>0   2 9  x 2 -2>1/4 x - >0  4 . 3   - 3<x<- 2   3 <x< 3  2. 18.

<span class='text_page_counter'>(19)</span> 31)log2(x2 +7x+3)<-log1/2(2x-1)  log2(x2+7x+3)<log2(2x-1). x 2 +7x+3>0  2  x +7x+3<2x-1. x 2 +7x+3>0  2 VN x +5x+4<0 . 32)x(lg5 -1)=lg(2x+1)–lg6 xlg(5/10)=lg(2x+1)–lg6 -lg2x=lg(2x+1)–lg6 lg2x(2x+1)=lg62x(2x+1)=6 4x+2x-6 =02x=2 hoặc 2x= -3x=1 33)log2(x+3) = log3(x+8) Đặt t=log2(x+3)x=2t-3 19.

<span class='text_page_counter'>(20)</span> 33)log2(x+3) = log3(x+8) Đặt t=log2(x+3)x=2t-3 Khi đó pt: t=log3(2t+5)3t=2t+5 2 t 1 t  1=( ) +5.( ) 3 3 2 t 1 t Xet hs:y=( ) +5.( ) ;t  R 3 3 2 t 2 1 t 1 y'=( ) ln( )  ( ) ln( )<0; t  R 3 3 3 3 =>hs nghich biến trên R; mà f(2)=1=>t=2 là ngh duy nhất của pt f(t)=1 Ta có t=2x=1 20.

<span class='text_page_counter'>(21)</span> 34)9x +2(x -2).3x + 2x – 5 = 0 Đặt t=3x;t>0; pt: t2+2(x-2)t+2x-5=0; =(x-3)2 t= -1(loại);t=-2x+5 Vậy : 3x=5-2x3x+2x-5=0 Xét hs y=3x+2x-5;D=R y’=3xln3+2>0;x => hs đồng biến trên R Mà f(1)=0 nên x=1 là ngh duy nhất của pt 35)-x.2x = x(3–x)-3.2x. 21.

<span class='text_page_counter'>(22)</span> 35)-x.2x = x(3–x)-3.2x 2x(-x+3) =x(3-x)(3-x)(2x-x)=0.  x=3  x  2 -x=0 Xét hs y=2x-x; D=R +)Nếu x<0=>y>0 mọi x=>pt VN +)Nếu x1=> y’=2xln2-1 2ln2-1=ln4-1>0=>hs tăng=>f(x)f(1)=1>0. +)x[0;1)=>2x 1;-x>-1=>y>0 Vậy pt 2x-x=0 VN=> pt đã cho có ngh duy nhất x=3 36)ln(x+1) +ln(x+3)= ln(x+7) 22.

<span class='text_page_counter'>(23)</span> 36)ln(x+1) +ln(x+3)= ln(x+7). 1 2 37) + =1 4-log 2 x 2+log 2 x 1 2 + =1;t 4;t -2 Đặt t=log2x; pt: 4-t 2+t t2-3t+2=0t=1(nh) hoặc t=2(nh) log2x=1 hoặc log2x=2x=2 hoặc x=4 38)log2x + log3x + log4x = log20x 23.

<span class='text_page_counter'>(24)</span> 38)log2x + log3x + log4x = log20x Đk: x>0 Xét hs y=log2x + log3x + log4x- log20x; x>0 1 1 1 1 1 1 1 1  y'= + + =  + xln2 xln3 xln4 xln20 x  ln3 ln4 ln20  1 1 1 0<ln3<ln4<ln20=> + >0 ln3 ln4 ln20 =>y’>0;x>0=> hs đồng biến Mà f(1)=0=>x=1 là ngh duy nhất của pt đã cho 39)log4log2x+log2log4x=2 24.

<span class='text_page_counter'>(25)</span> 39)log4log2x+log2log4x=2 Đk: log2x>0;log4x>0x>1 Khi đó pt: log4(log2x)+log4(log4x)2=2 log4[(log2x).(log4x)2]=2 (log2x).(log4x)2=16 2. 2.  log 4 x (log 4 x) =16  2log 4 x(log 4 x)2 =16 3.  (log 4 x) =8  log 4 x=2  x=16(nh) 40)log 2 (1+ x )=log 3 x 25.

<span class='text_page_counter'>(26)</span> 40)log 2 (1+ x )=log 3 x. Đk: x>0 Đặt t=log3xx=3t; khi đó pt:. log 2 (1+ 3t )=t  1+ 3t =2t t t t t 1 2 3 2 2 2  1+3 =4  ( ) +( ) =1 t 4 t 4 1 2 3 2 Xet hs:y=( ) +( ) ;D=R 4 4 t t 1 1 2 1 1 1 2 1 y'= ( ) ln( )+ ( ) ln( )<0;x 2 4 4 2 3 3 =>hs nghich biến trên R mà f(2)=1=>t=2 là ngh duy nhất của pt f(t)=1. =>x=9 là ngh pt đã cho 26.

<span class='text_page_counter'>(27)</span> 41)lg(x2-x-6)+x=lg(x+2)+8. Đk: x>3. 2. x -x-6 pt:lg +x-8=0 lg(x-3)+x-4=0 x+2. Xét hs: y=lg(x+3)+x-8=0;x>3 y’=1/xln10 +1>0;x>3=>hs tăng trên TXĐ Mà f(7)=0=>x=7 là ngh duy nhất của pt. 42)32. x+9 x-5. =0,25.125. x+9 5 x-5.  (2 ) 2. 5(x+9) 2 x-5. =2-2 .5 =5. 3.. 3(x+7) x-3. x+7 x-3. x+7 x-3. 3 x-5.   7x+35 3(x+7) 2   x-5 x-3  2 =5  1   5 x-3 . x+7. =1 27.

<span class='text_page_counter'>(28)</span> 43)log4[(x+2)(x+3)] +log4[(x-2)/(x+3)]= 2 Đk:x<-3 hoặc x>2 x-2 Khidopt:log 4 (x+2)(x+3) =2 x+3 2 2 log4(x -4)=2x -4=16.  x= 2 5 (nh) 44)16x = log1/2x. 28.

<span class='text_page_counter'>(29)</span> 45)log2(2x+1)log2(2x+1+2)=2. 46)xlg9 + 9lgx = 6. 29.

<span class='text_page_counter'>(30)</span> 47)x. 3lg 3 x-(2/3)lgx. 3. =100 10. 30.

<span class='text_page_counter'>(31)</span> 48)1+logx+25 = log5(x+2). 49)22x-1+22x-2+22x-3448. 31.

<span class='text_page_counter'>(32)</span> 50)1/(5lgx) /(1+lgx) < 1. 51)log1/3log2x2 > 0. 32.

<span class='text_page_counter'>(33)</span> 52)log2x ≤6 – x. 53)e2+lnx =x+3. 54)log2(3x+1)log3x = 2log2(3x+1) 33.

<span class='text_page_counter'>(34)</span> 55)2. log 3 x 2. .5. log 3 x. =400. 34.

<span class='text_page_counter'>(35)</span> 56)log0.22x –log0.2x -6 ≤ 0. 35.

<span class='text_page_counter'>(36)</span> x. x+1. 4 -2 +8 x 57) <8 1-x 2. 36.

<span class='text_page_counter'>(37)</span> 58)ln|x -2| + ln|x+4| ≤3ln2. 59)8x+1 +8.(0.5)3x +3.2x+3 =125-24.(0.5)x. 37.

<span class='text_page_counter'>(38)</span> x. x. 60)( 6+ 35 ) +( 6- 35 ) =12. 61)hvhk01) log3(x2+x+1) – log3x = 2x – x2. 38.

<span class='text_page_counter'>(39)</span> ĐỀ KIỂM TRA 2008. 39.

<span class='text_page_counter'>(40)</span> 2x. 1.Tinh dao ham: a)y=e sin(2x+1) y’=(e2x)’sin(2x+1)+e2x.[sin(2x+1)]’= =2e2xsin(2x+1)+e2x.2cos(2x+1) =2e2x[sin(2x+1)+cos(2x+1)]. ĐỀ KIỂM TRA 2008 b)y=ln e x +1 x x 1 (e +1)' e y= ln(e x +1)=>y'= = x 2 2(e +1) 2(e x +1) 2a)log 9 (2x-5)+log 3 x-1=1. đk:x>5/2; khi đó pt trở thành: 40.

<span class='text_page_counter'>(41)</span> 2a)log 9 (2x-5)+log 3 x-1=1 đk:x>5/2; khi đó pt trở thành:. log 9 (2x-5)+log 32 ( x-1)2 =1  log 9 (2x-5).(x-1)=log 9 9 (2x-5)(x-1)=92x2-7x-4=0 x=4 (nhận) hoặc x=-1/2(loại). b)3. 2x+1. x. -28.3 +9=0.  3x =9  2x x   3.3 -28.3 +9=0 1 x 3 =  3.  x=2  x=-1 . c)5. log 8 x+2. +5. log 8 x-1. =3 x 41.

<span class='text_page_counter'>(42)</span> c)5. log 8 x+2. +5. log 8 x-1. =3 x. đk:x>0; khi đó pt trở thành: 1 log8x log8 3 x log 8 x 5 .25+ 5 =8 126 log58x log8 x (Dạng m.ax=n.bx). Chia 2 vế cho…  5 =2 5 5 log 5 5 126 5 log8x 5 2  log 8 x=log 5  x=8 ( ) = 2 126 2 126. d)x.2x log 3 (-2x 2 -7x+4)+2>2x.2x +log 3 (-2x 2 -7x+4)(1) Đk: -2x2-7x+4>0-4<x<1/2 (1)  (x.2x -1)[log 3 (-2x 2 -7x+4)-2]>0(2) 42.

<span class='text_page_counter'>(43)</span> d)x.2x log 3 (-2x 2 -7x+4)+2>2x.2x +log 3 (-2x 2 -7x+4)(1) ;-4<x<1/2 (1)  (x.2x -1)[log 3 (-2x 2 -7x+4)-2]>0(2) +)x(-4;0]=>x.2x0 x.2x -1<0 1  2 0<x< x x 2 =>x.2 < <1=>x.2 -1<0 +)x(0;1/2)=>  2 0<2x < 2  Vậy mọi x(-4;1/2)=>x.2x -1<0 Bptlog3(-2x2-7x+4)<2-2x2-7x+4<92x2+7x+5>0 x<-5/2 hoặc x>-1 So đk ta có ngh: -4<x<-5/2 hoặc -1<x<1/2 Đề 2009 sin3x 1.Tinh dao ham a)y=5. 43.

<span class='text_page_counter'>(44)</span> 2009 1.Tinh dao ham a)y=5sin3x y'=(sin3x)'5sin3x ln5=3cos3x5sin3xln5 2 2 b)y=x ln x -1 2.Giải: a)3x+2+7x=4.7x-1+34.3x-1 4 x 34 x x x  9.3 +7 = .7 + .3 7 3 3 x 7 x 7 x 49  .7 = .3  ( ) =  x=2 7 3 3 9 2 x 2 b)log 2 4x+log 2 =8 8. 44.

<span class='text_page_counter'>(45)</span> 2 x 2 Đk:x>0;khi đó pt: b)log 2 4x+log 2 =8 8 (2+log 2 x)2 +2log 2 x-3=8 Đặt t=log2x;pt:. (t+2)2+2t-11=0t2+6t-7=0t=1 hoặc t=-7 log2x=1 hoặc t=log2x=-7x=2 hoặc x=2-7. c)7 logx 49 =343.x 5 Đk: 1x>0 Khi đó, lấy loga cơ số x hai vế, pt log x 7 log x 49 =log x 343.x 5  log x 49.log x 7=log x 7 3 +log x x 5 2logx27-3logx7-5=0  log x 7=-1 1  x=7   (nhan) 5 2/5  log x 7= x=7   2 45.

<span class='text_page_counter'>(46)</span> d)cm: 3xln(ex-1)=2x+5 có ngh duy nhất Đk: x>0; khi đó pt trở thành : 2 x 1 x ( ) +5.( ) -ln(e x -1)=0 3 3 2 x 1 x Xet hs y=( ) +5.( ) -ln(e x -1);x>0 3 3 x 2 x 2 1 x e y'=( ) ln -5.( ) ln3- x <0; x>0(e x -1>0) 3 3 3 e -1 => Hs y giảm trên (0;+). ma lim+ f(x)=+; ma lim f(x)=- x 0. x + . =>pt có duy nhất 1 nghiệm e)32x+1-4.3x+1=0 46.

<span class='text_page_counter'>(47)</span> e)32x+1-4.3x+1=0 x  3 =1  x=0 2x x 3.3 -4.3 +1=0    x  x=-1  3 =1/3 1 f) log 2 (2x+3)-log 4 (x-3)=1 Đk: x>3 2 Khidopt:log 22 (2x+3)-log 4 (x-3)=1 log4[(2x+3)/(x-3)]=1  2x+3 =4 x-3 2x+3=4x-12x=15/2(nh) Đk: x>0 g)53-log5 x =25x Khi do pt:log 5 5 3-log5x =log 5 25x 3-log5x=2+log5xlog5x=1/2x=5 (nhận). 2010. 47.

<span class='text_page_counter'>(48)</span> 2010 a)32x+5=3x+2+2 x  3 =-2/27(loai) 2x x 243.3 -9.3 -2=0    x=-2 x  3 =1/9 x-7 1 1 6 Đk x>3 b)( ) 8 3x 2 x-7 3 -x+7 1   2 6 2 3x  0 1 6 6 x + || 0 + 0 2  0<x 1 -x +7x-6  0   x  x 6 x 2 -3x+2 x 2 +6x+5 2x 2 +3x+7 c)4 +4 =4 +1 Đặt m=x2-3x+2;n=x2+6x+5=>n+m=2x2+3x+1 Pt4m+4n=4m+n+1(4m-1)(4n-1)=0 48.

<span class='text_page_counter'>(49)</span> x 2 -3x+2. x 2 +6x+5. 2x 2 +3x+7. c)4 +4 =4 +1 Đặt m=x2-3x+2;n=x2+6x+5=>n+m=2x2+3x+1 Pt4m+4n=4m+n+1(4m-1)(4n-1)=0 4m=1 hoặc 4n=1m=0 hoặc n=0.  x 2 -3x+2=0  x=1;x=2  2   x=-2;x=-3  x +6x+5=0 1 x-1 2 3 d)log 27 (x -5x+6) = log 3 +log 3 (x-3)2 2 2 2 x -5x+6>0 x<2 hoac x>3  1<x<2   dk: x-1>0  x>1   x>3 (x-3)2 >0  x 3   Khi đó pt 49.

<span class='text_page_counter'>(50)</span> 1 x-1 d)log 27 (x -5x+6) = log 3 +log 3 (x-3)2 2 2 x 2 -5x+6>0 x<2 hoac x>3  1<x<2   dk: x-1>0  x>1   x>3 (x-3)2 >0  x 3   1 x-1 2 Khi đó pt log 3 (x 2 -5x+6)3 = log 1/2 +log (x-3) 3 3 3 2 2 x-1 2  log 3 (x -5x+6)=log 3 +log 3 (x-3) 2 2 x-1 2  log 3 (x -5x+6)=log 3 (x-3) 2  2(x 2 -5x+6)=(x-1)(x-3)2 2 (x-3)[2(x-2)-(x-1)(x-3)]=0  x=3+ 2  x=3(loai)  2   x=3- 2  x -6x+7=0 2. 3. 50.

<span class='text_page_counter'>(51)</span> log 25 81 x 2 -6x+8 x 2 -6x+8 e)log 2  5 dk: >0 x+1 x+1 1 log 2 34 x 2 -6x+8 2 5 log  5 Khi đó pt 2 x+1 2 2 x -6x+8 x -6x+8 log 5 3  log 2 5  log 2 3 x+1 x+1 2 2 x -6x+8 x -14  8  0 x+1 x+1. <=> -1<x0 hoặc x14. 1 2 f)log 3-4x2 (9-16x )=2+  3-4x >0 2 log 2 (3-4x ) dk: 3-4x 2 1  9-16x 4 >0  4. 3-4x 2 >0  2 3-4x 1  51.

<span class='text_page_counter'>(52)</span> 1 f)log 3-4x2 (9-16x )=2+ 2 log 2 (3-4x ) 3-4x 2 >0 2   3-4x >0 2 dk: 3-4x 1   2 3-4x 1  9-16x 4 >0  4 2 2 Khi do pt:log 3-4x2 (9-16x )=log 3-4x2 (3-4x ) +log 3-4x2 2 4.  log 3-4x2 (9-16x 4 )=log 3-4x2 (3-4x 2 )2 .2 9-16x4=2(3-4x2)2(3-4x2)(3+4x2-6+8x2)=0  3-4x 2 =0(loai) 1   2 1  x=  (nh) x  2  4 52.

<span class='text_page_counter'>(53)</span> 2.x y>0;cm:2011lnx-2010lny ln(2011x-2010y) Xét nN*;n>1 x,y như gt. Theo bđt cosi: n n n n n n n n n(n-1) x +(n-1)y =x + (y +y +...+y ) n x y       n-1so hang. xn+(n-1)ynnxyn-1 xnyn-1[nx-(n-1)y] ln(xn)ln{yn-1[nx-(n-1)y]} nlnx(n-1)lny+ln[nx-(n-1)y] nlnx -(n-1)lny ln[nx-(n-1)y] Với n=2011=>đpcm 53.

<span class='text_page_counter'>(54)</span> ĐỀ 2011 1. 32+x-32-x=80.  5 2.    3. x+1.  9     25 . x 2 +2x+1. 3.log 2 (x+1)+2=log 4. 9. log 1 (x+1) 3. 2. =5. log 1 (2x +1) 5. 2.  5 =   3. 9. 4-x +log 8 (4+x)3 5.. 1. log 1 3. x. 6. 4 -2. x+1. 1 > 2x 2 -3x+1 log 1 (x+1) 3. x2. +4 0 54.

<span class='text_page_counter'>(55)</span> ĐỀ 2011 1. 32+x-32-x=80. 9  9.3 - x -80=0 3 x. 9.9x-80.3x-9=0 x.  3 =9  x 1  3 = 9  5 2.    3. x+1.  9     25 . x=2. x 2 +2x-11.  5 =   3. 9. 55.

<span class='text_page_counter'>(56)</span>  5 2.    3. x+1.  5    3.  9     25 . x 2 +2x-11. x+1-2(x 2 +2x-11).  5 =   3.  5 =   3. 9. 9. x+1-2x2-4x+22=92x2+3x-14=0 x=2 hoặc x= -7/2. 3.log 2 (x+1)+2=log. 2. 4-x +log 8 (4+x). 3. Đk: -1<x<4 56.

<span class='text_page_counter'>(57)</span> 3.log 2 (x+1)+2=log. 2. 4-x +log 8 (4+x). 3. Đk: -1<x<4; khi đó:. pt:log 2 (x+1)+2=log 2 (4-x)+log 23 (4+x). 3.  log 2 (x+1)+2=log 2 (4-x)+log 2 (4+x) log2(x+1).4=log2(16-x2) (x+1)4=16-x2x2+4x-12=0. 4. 9. log 1 (x+1) 3. =5. log 1 (2x 2 +1). 2 -log 3 (x+1). pt: (3 ). x=2(nh);x=-6(loai). 5. =(5). ;đk: x>0 -log 5 (2x 2 +1). 57.

<span class='text_page_counter'>(58)</span> 4. 9. log 1 (x+1) 3. =5. log 1 (2x 2 +1) 5. 2 -log 3 (x+1). pt: (3 ). ;đk: x>-1. =(5). -log 5 (2x 2 +1). -2. log 3 (x+1) log 5 (2x     3  =5. 2. +1).  . -1. 1 1 = 2 (x+1) =(2x +1)  2 (x+1) 2x +1 2 2 2 -2. 2. -1. (x+1) =(2x +1)x -2x=0x=0(nh);x=2(nh) x=0(nh);x=1/2(nh). 5.. 1. log 1 3. 1 > 2x 2 -3x+1 log 1 (x+1) 3 58.

<span class='text_page_counter'>(59)</span> 5.. 1. log 1. 1 > 2x 2 -3x+1 log 1 (x+1) 1. 3. 1  < log 3 2x 2 -3x+1 log 3 (x+1)  a>0 va b>0 va a>b 1 1  Taco : <   a<0 va b<0 va a>b a b  a<0 va b>0 log 3 (x+1)>0 x+1>1   2 TH1: log 3 2x 2 -3x+1>0  2x -3x+1>1  2 log 2x -3x+1>log 3 (x+1)   3 2  2x -3x+1>x+1 3. 59.

<span class='text_page_counter'>(60)</span> x+1>1  x>0  2   2x -3x+1>1  x<0  x>1/2  x>5   2 2 2 2x -3x+1>x+1 2x -3x+1>x +2x+1   log 3 (x+1)<0  TH2: log 3 2x 2 -3x+1<0  2 log 2x -3x+1  log 3 (x+1)  3 -1<x<0 -1<x<0  2   2x -3x+1<1  0<x<1/2 (VN)   2 2 2x 3 x+1  x  1 2 x -3x+1>x+1   60.

<span class='text_page_counter'>(61)</span> log 3 (x+1)>0 TH3:  2 log 2x -3x+1<0  3 x>0 x>0   2 2   2x -3x+1<1  2x -3x+1<1  2x 2 -3x+1>0 2x 2 -3x+1>0  . 1 3 Vay:S=(0; )  (1; )  (5;+) 2 2 x. x+1. x. x2. 6. 4 -2. 1   0<x< 2   1<x< 3  2. x2. +4 0 x+1.  4 +4 2 x x2 x x2 Theo bdt cosi: 4 +4 2 4 4 61.

<span class='text_page_counter'>(62)</span> x. x2. x. Theo bdt cosi: 4 +4 2 4 4 x. x2. Hay: 4 +4 2.2 Ma : 2. x 2 +x+1. x+1. x 2 +x. =2. x2. x 2 +x+1 x2. 2 ; x Nen:4 +4 2x+1 ; x 2 x x 4 =4 Vay bpt    x=0 2 x  =0 x 2 x2 C2:Dat t=2 >0; ta duoc: t -2t+4 0 2 x2  (t-1) +(4 -1) 0 2 x2 x x+1 x2 Vi (t-1) 0;(4 -1) 0;x,t 6. 4 -2 +4 0 t-1=0 Nen bpt   x2  x=0 4 -1=0 62 x.

<span class='text_page_counter'>(63)</span> 1.log 2013 x-log 2012 x<1  log 2013 2012.log 2012 x-log 2012 x<1  log 2012 x(log 2013 2012-1)<1 1  log 2012 x> (log 2013 2012-1<0) log 2013 2012-1 1  log 2012 x>  log 2012 x>log 2012 2013 2012 2013 log 2013 log 2012 2013 2013  x>2012 2013 x-1. 2. 3.2 -2. x 2 -x. -4. x-1. 0 63.

<span class='text_page_counter'>(64)</span> x-1. x 2 -x. x-1. x-1. 2. x-1. x-1. 2. 2. 3.2 -2 -4 -1 0 x-1 x-1 x-1 x 2 -x  (2.2 -4 -1)+(2 -2 ) 0  -(2 -1) +2 (1-2 2. ) 0. x-1. (x-1)2. -1] 0. x-1. (x-1)2. -1] 0.  -(2 -1) -2 [2 x-1. x 2 -2x+1.  (2 -1) +2 [2. Ta thay VT 0; x x-1. 2. (2 -1) =0 Vay bpt    2 x-1 (x-1) -1] 0 2 [2. x-1. 2 =1  (x-1)2  x=1 =1 2 64.

<span class='text_page_counter'>(65)</span>

×