Tải bản đầy đủ (.docx) (1 trang)

Giai ho Nguyen Van Thu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (69.77 KB, 1 trang )

<span class='text_page_counter'>(1)</span>Bài tập x 2  yz y 2  xz  x(1  yz ) y (1  xz). 1 1 1 x yz    x y z. Chứng minh rằng: thì Với x # y, yz # 1, xz # 1, x # 0 , y # 0, z # 0 Hướng dẫn Áp dụng tính chât day tỷ số bằng nhau ta có 2. 2. 2. 2. (x − y)(x + y )+ z ( x − y) (x − y )(x+ y + z ) x − yz y − xz x − yz − y + xz = = = = =x+ y+ z x (1 − yz) y (1− xz) x (1− yz)− y (1 − xz) x − y − xyz+ xy ( x − y). suy ra 2. x − yz 1 1 1 =x+ y+ z ⇔ x 2 −yz=( x+ y+ z)(x − xyz )⇔ xyz (x+ y+ z )=xy+ yz+ xz ⇔ x+ y + z= + + x (1 − yz) x y z GVHD Nguyễn Minh Sang THCS Lâm Thao –Phú Thọ.

<span class='text_page_counter'>(2)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×