ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC
-------------------------------
LÊ BÁ LONG NHẬT
MỘT SỐ VẤN ĐỀ VỀ LÝ THUYẾT ĐỐI NGẪU
LIÊN HỢP VÀ LÝ THUYẾT ĐỐI NGẪU
LAGRANGE
Chuyên ngành: Toán ứng dụng
Mã số
: 8 46 01 12
LUẬN VĂN THẠC SĨ TOÁN HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC
TS. Dương Thị Việt An
THÁI NGUYÊN - 2020
ử ử
ử ỵ
ớ ỡ
tự
ỗ ỗ ✳ ✳ ✳ ✳ ✳
❍➔♠ ❧✐➯♥ ❤ñ♣ ✈➔ ♠ët sè t t
ữợ ừ ỗ ✳ ✳
▼ët sè ❦➳t q✉↔ ❜ê trñ ✳ ✳ ✳
ởt số ỵ t❤✉②➳t ✤è✐ ♥❣➝✉
✷✳✶
✷✳✷
✷✳✸
✷✳✹
✷✳✺
P❤→t ❜✐➸✉ ❜➔✐ t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✣è✐ ♥❣➝✉ ❧✐➯♥ ❤ñ♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✣è✐ ♥❣➝✉ ▲❛❣r❛♥❣❡ ✳ ✳ ✳
ử ử sỡ ỗ ố
ử t t ữợ
t
ử ỵ
R
R
R+
X
x
x
M N
|x|
||x||
B X (0, 1)
t A
inf f (x)
x∈K
sup f (x)
x∈K
δΩ (·)
epi f
dom f
x∗ , x
tr÷í♥❣ sè t❤ü❝
t➟♣ sè t❤ü❝ s✉② rë♥❣
t➟♣ sè t❤ü❝ ❦❤æ♥❣ ➙♠
❦❤æ♥❣ ❣✐❛♥ ❧✐➯♥ ủ ố ừ X
t rộ
ợ ồ x
tỗ t x
❝õ❛ ❤❛✐ t➟♣ ❤ñ♣ M ✈➔ N
❣✐→ trà t✉②➺t ✤è✐ ❝õ❛ x
❝❤✉➞♥ ❝õ❛ ✈➨❝tì x
❤➻♥❤ ❝➛✉ ✤ì♥ ✈à ✤â♥❣ tr♦♥❣ X
♣❤➛♥ tr♦♥❣ ❝õ❛ t➟♣ A
✐♥❢✐♠✉♠ ❝õ❛ t➟♣ sè t❤ü❝ {f (x) | x ∈ K}
s✉♣r❡♠✉♠ ❝õ❛ t➟♣ sè t❤ü❝ {f (x) | x K}
ừ t
tr ỗ t❤à ❝õ❛ ❤➔♠ f
♠✐➲♥ ❤ú✉ ❤✐➺✉ ❝õ❛ ❤➔♠ f
❣✐→ trà ❝õ❛ ♣❤✐➳♠ ❤➔♠ x∗ t↕✐ x
✷
f (x)
f
f
l.s.c.
N (x)
val(P )
ữợ ừ ỗ f t↕✐ x
❤➔♠ ❧✐➯♥ ❤ñ♣ ❝õ❛ ❤➔♠ f
❤➔♠ ❧✐➯♥ ❤ñ♣ tự ừ f
ỷ tử ữợ
ồ ❝➟♥ ❝õ❛ x
t➟♣ ❝→❝ ❣✐→ trà tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ P
✸
ỵ tt ố ởt ở q trồ ừ ỵ tt tố ữ
ữỡ ự ợ ộ ❜➔✐ t♦→♥ ◗✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✭❝á♥ ❣å✐ ❧➔ ❜➔✐
t♦→♥ ❣è❝✮ ❝â ♠ët ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉✳ ❇➔✐ t♦→♥ ❣è❝ ✈➔ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ❝â
♠è✐ ❧✐➯♥ ❤➺ q✉❛ ❧↕✐ ✈ỵ✐ ♥❤❛✉✱ t➼♥❤ ❝❤➜t ❝õ❛ ❜➔✐ t♦→♥ ♥➔② ❝â t❤➸ ✤÷đ❝ ❦❤↔♦
s→t t❤ỉ♥❣ q✉❛ ❜➔✐ t♦→♥ ❦✐❛✳ ◆❤✐➲✉ q✉② tr➻♥❤ t➼♥❤ t♦→♥ ❤❛② ♣❤➙♥ t➼❝❤ ✤÷đ❝
❤♦➔♥ t❤✐➺♥ ❦❤✐ ①❡♠ ①➨t ❝➦♣ ❜➔✐ t♦→♥ ❣è❝ ✈➔ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ tr♦♥❣ ♠é✐
q✉❛♥ ❤➺ ❝❤➦t ❝❤➩ ❝õ❛ ❝❤ó♥❣✱ ♠❛♥❣ ❧↕✐ ♥❤ú♥❣ ❧đ✐ ➼❝❤ tr♦♥❣ ✈✐➺❝ ❣✐↔✐ q✉②➳t
❝→❝ ✈➜♥ ✤➲ ♣❤→t s✐♥❤ tø t❤ü❝ t➳✳
❇➔✐ t♦→♥ q✉② ❤♦↕❝❤ t♦→♥ ❤å❝ tr♦♥❣ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ✈ỉ ❤↕♥ ❝❤✐➲✉ ✤➣
✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ tø ❣✐ú❛ t❤➳ trữợ t ợ ổ t q
t✉②➳♥ t➼♥❤ ✈ỉ ❤↕♥ ❝❤✐➲✉✳ ◆❤✐➲✉ ❜➔✐ t♦→♥ tè✐ ÷✉ tr♦♥❣ ❝→❝ ❦❤ỉ♥❣ ❣✐❛♥
❤➔♠✱ ❝â ❝➜✉ tró❝ ♣❤ù❝ t↕♣✱ ♥❤÷ ❜➔✐ t♦→♥ ✤✐➲✉ ❦❤✐➸♥ tè✐ ÷✉ ✈➔ ❜➔✐ t♦→♥
❜✐➳♥ ♣❤➙♥ ❝â t❤➸ ✤÷❛ ✈➲ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t♦→♥ ❤å❝ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✈æ
❤↕♥ ❝❤✐➲✉✳
P❤➨♣ t➼♥❤ ✈✐ ♣❤➙♥ ❧➔ ♠ët tr♦♥❣ ♥❤ú♥❣ ✤➲ t➔✐ ❝ì ❜↔♥ ♥❤➜t ❝õ❛ ❣✐↔✐
t➼❝❤ ❝ê r t ỗ ỵ tt trð ♥➯♥ ♣❤♦♥❣ ♣❤ó
♥❤í ♥❤ú♥❣ t➼♥❤ ❝❤➜t ✤➦❝ ❜✐➺t ❝õ❛ t ỗ ỗ ữợ
♥✐➺♠ ♠ð rë♥❣ ❝❤♦ ❦❤→✐ ♥✐➺♠ ✤↕♦ ❤➔♠ ❦❤✐ ❤➔♠ ổ
t trỏ ừ ữợ ✈✐ ♣❤➙♥ tr♦♥❣ ❣✐↔✐ t➼❝❤ ❤✐➺♥ ✤↕✐ ❝ô♥❣ ❝â t➛♠ q✉❛♥
trå♥❣ ♥❤÷ ✈❛✐ trá ❝õ❛ ✤↕♦ ❤➔♠ tr♦♥❣ ❣✐↔✐ t➼❝❤ ờ
r ỵ tt tố ữ õ t ỗ õ r q
t t tờ ữợ ừ ỗ tữớ õ trỏ ❤➳t sù❝
q✉❛♥ trå♥❣✱ ✤➦❝ ❜✐➺t ❧➔ ❦❤✐ t❛ ❧➔♠ ✈✐➺❝ ợ t tố ữ õ r ở
ử ừ ự ỵ tt ố ủ
ỵ tt ố r t q ỗ õ t số tr
ổ ứ õ ử ữủ ỗ ố ự q
t t tờ ữợ ừ ỗ tữớ ữợ ỳ
q t ủ
ở ❝õ❛ ❧✉➟♥ ✈➠♥ ✤÷đ❝ ❞à❝❤ r❛ ❚✐➳♥❣ ❱✐➺t ♠ët sè ♥ë✐ ❞✉♥❣
tø ♠ö❝ ✷✳✺ ❉✉❛❧✐t② ❚❤❡♦r② tr♦♥❣ ❝✉è♥ s→❝❤ ❝❤✉②➯♥ ❦❤↔♦ ✧P❡rt✉r❜❛t✐♦♥
❆♥❛❧②s✐s ♦❢ ❖♣t✐♠✐③❛t✐♦♥ Pr♦❜❧❡♠s✧ ✭❙♣r✐♥❣❡r✱ ◆❡✇ ❨♦r❦✱ ✷✵✵✵✮ ❝õ❛ ❝→❝
t→❝ ❣✐↔ ❏✳ ❋✳ ❇♦♥♥❛♥s ❛♥❞ ❆✳ ❙❤❛♣✐r♦ ❬✸❪✳ ❚r♦♥❣ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ t→❝
❣✐↔ ❝ơ♥❣ t➻♠ ❤✐➸✉✱ tê♥❣ ❤đ♣ ❝→❝ ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ❧✐➯♥ q✉❛♥ ✈➔ ❝è ❣➢♥❣ ❞✐➵♥
✤↕t ❝❤✐ t✐➳t ❝❤ù♥❣ ♠✐♥❤ ❝õ❛ ❝→❝ ♠➺♥❤ ✤➲ ✈➔ ỵ
ỗ t ❧✉➟♥✱ ❞❛♥❤ ♠ư❝ t➔✐ ❧✐➺✉ t❤❛♠
❦❤↔♦✱ ✈➔ ❤❛✐ ❝❤÷ì♥❣ ❝â ♥ë✐ ❞✉♥❣ ♥❤÷ s❛✉✿
❈❤÷ì♥❣ ✶✿ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ♥❤➢❝ ❧↕✐ ♠ët sè ❦❤→✐ ♥✐➺♠ ✈➔ ❦✐➳♥
t❤ù❝ ❝ì ❜↔♥ ✈➲ t ỗ ỗ ủ ũ ởt số ❦➳t q✉↔ ❜ê trđ
♥❤➡♠ ♣❤ư❝ ✈ư ❝❤♦ ✈✐➺❝ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❦➳t q✉↔ ð ❝❤÷ì♥❣ s❛✉✳
✺
ữỡ ởt số ỵ tt ố tr
t ỵ tt ố ♥❣➝✉✿ ✣è✐ ♥❣➝✉ ❧✐➯♥ ❤đ♣ ✈➔ ✣è✐ ♥❣➝✉
▲❛❣r❛♥❣❡✳ ❱➼ ❞ư ử sỡ ỗ ố ụ ữủ ❝ù✉ ð ❝❤÷ì♥❣
♥➔②✳ ✣➦❝ ❜✐➺t✱ ð ♣❤➛♥ ❝✉è✐ ❝❤÷ì♥❣✱ ♠ët t q q t t t ữợ
ừ tờ ỗ ỷ tử ữợ tữớ t ữủ
ử sỡ ỗ ố
▲í✐ ❝↔♠ ì♥
▲✉➟♥ ✈➠♥ ♥➔② ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ t↕✐ tr÷í♥❣ ồ ồ
ồ ữợ sỹ ữợ ❞➝♥ t➟♥ t➻♥❤ ❝õ❛ ❚❙✳ ❉÷ì♥❣ ❚❤à ❱✐➺t ❆♥✳
❊♠ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ tỵ✐ ❈ỉ ✤➣ ữợ q
tr ỳ ♥❣❤✐➯♥ ❝ù✉ tr♦♥❣ q✉→ tr➻♥❤ ❡♠ ❤å❝ t➟♣
✈➔ ❤♦➔♥ t❤✐➺♥ ❧✉➟♥ ✈➠♥ ♥➔②✳
❊♠ ❝ơ♥❣ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❝→❝ t❤➛② ❝ỉ tr♦♥❣ ❑❤♦❛ ❚♦→♥ ✲ ❚✐♥✱
tr÷í♥❣ ✣↕✐ ❤å❝ ❑❤♦❛ ❤å❝✱ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ✤➣ ❣✐↔♥❣ ❞↕② ✈➔ t↕♦ ✤✐➲✉
❦✐➺♥ t❤✉➟♥ ❧ñ✐ ❝❤♦ ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❡♠ ❤å❝ t➟♣ ð tr÷í♥❣✳
❚❤→✐ ◆❣✉②➯♥✱ ♥❣➔② ✶✻ t❤→♥❣ ✽ ♥➠♠ ✷✵✷✵
❍å❝ ✈✐➯♥
▲➯ ❇→ ▲♦♥❣ ◆❤➟t
✼
❈❤÷ì♥❣ ✶
❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ❝❤ó♥❣ tỉ✐ ♥❤➢❝ ❧↕✐ ♠ët sè ❦❤→✐ ♥✐➺♠ ✈➔ ❦✐➳♥ t❤ù❝ ❝ì
❜↔♥ ✈➲ t ỗ ỗ ủ ũ ởt số ❦➳t q✉↔ ❜ê trđ ♥❤➡♠
♣❤ư❝ ✈ư ❝❤♦ ✈✐➺❝ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❦➳t q✉↔ ❝õ❛ ❝❤÷ì♥❣ s❛✉✳ ◆ë✐ ❞✉♥❣ ❝õ❛
❝❤÷ì♥❣ ✤÷đ❝ t❤❛♠ ❦❤↔♦ tø ❝→❝ t➔✐ ❧✐➺✉ ❬✶❪✱ ❬✷❪ ✈➔ ❬✸❪✳
✶✳✶ ỗ ỗ
sỷ X ổ ợ ổ ố tữỡ ự X ∗✱
D ⊂ X, f : D → R = R {}. t ủ ữợ
epif := {(x, ) ∈ D × R | f (x) ≤ α},
domf := {x ∈ D | f (x) < +∞},
❧➛♥ ❧÷đt ✤÷đ❝ ồ tr ỗ t ỳ ừ ❤➔♠ f. ❍➔♠ f ✤÷đ❝
❣å✐ ❧➔ ❝❤➼♥❤ t❤÷í♥❣ ♥➳✉ domf = ∅ ✈➔ f (x) > −∞, ∀x ∈ D.
✣à♥❤ A X ữủ ồ ỗ ♥➳✉
∀x, y ∈ A, ∀λ ∈ (0, 1) ⇒ λx + (1 )y A.
ữợ t ỗ
❱➼ ❞ư ✶✳✶✳ ❚r♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉✱ ♠➦t ♣❤➥♥❣✱ ✤♦↕♥ t❤➥♥❣✱
✤÷í♥❣ t❤➥♥❣✱ t❛♠ ❣✐→❝✱ ❤➻♥❤ ❝➛✉ ❧➔ ❝→❝ t ỗ
tr sỷ A X( I) t ỗ
ợ I ❧➔ t➟♣ ❝❤➾ sè ❜➜t ❦ý✳ ❑❤✐ ✤â A =
Aα
α∈I
❝ô♥❣ t ỗ
tr sû t➟♣ Ai
λi ∈ R, 1, m✳
∈ X
❧➔ ❝→❝ t➟♣ ỗ
õ 1A1 + Ã Ã Ã + mAm t ỗ
tr sỷ Xi ổ t t t
Ai Xi
ỗ (i = 1, n)✳ ❑❤✐ ✤â✱ t➼❝❤ ✣➲ ❝→❝ A1 × A2 ì ... ì An t ỗ
tr X1 ì X2 × ... × Xn.
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳ ❍➔♠ f : D R ữủ ồ ỗ tr D epif t
ỗ tr X ì R
❬✶✱ tr❛♥❣ ✹✵❪✮ ❈❤♦ f : X → (−∞, +∞]✳ õ f
ỗ
f (x + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y), ∀x, y ∈ X, λ ∈ (0, 1).
✭✶✳✶✮
❈❤ù♥❣ ) f ỗ epif t ỗ õ ợ ồ
(x, r) epif (y, s) ∈ epif ✱ λ ∈ (0, 1)✱
t❛ ❝â
λ(x, r) + (1 − λ)(y, s) = (λx + (1 − λ)y, λr + (1 − λ)s) ∈ epif
⇔ f (λx + (1 − λ)y) ≤ λr + (1 − λ)s
⇔ f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y), (❧➜② r = f (x), s = f (y)).
◆➳✉ x ❤♦➦❝ y ❦❤æ♥❣ t❤✉ë❝ domf t❤➻ f (x) = +∞ ❤♦➦❝ f (y) = +∞✳ ❑❤✐
✤â ✭✶✳✶✮ ✤ó♥❣✳
⇐) ◆❣÷đ❝ ❧↕✐ ❣✐↔ sû ✭✶✳✶✮ ✤ó♥❣✳ ▲➜② (x, r) ∈ epif, (y, s) ∈ epif ✱ ✈ỵ✐ ♠å✐
✾
λ ∈ (0, 1)
t❛ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤✿
λ(x, r) + (1 − λ)(y, s) ∈ epif.
❚❤➟t ✈➟②✱ ✈ỵ✐ ❜➜t ❦➻ (x, r) ∈ epif, (y, s) ∈ epif ✱ s✉② r❛ f (x) ≤ r, f (y) ≤ s✳
❚❛ ❝â
f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y)
≤ λr + (1 − λ)s.
❚ø ✤â s✉② r❛ (λx + (1 − λ)y, λr + (1 − λ)s) ∈ epif, ❤❛② ♥â✐ ❝→❝❤ ❦❤→❝
λ(x, r) + (1 − λ)(y, s) ∈ epif.
❱➼ ❞ö ✶✳✷✳ ❈❤♦ C ❧➔ ♠ët t ỗ ừ X ừ C ✤÷đ❝ ✤à♥❤
♥❣❤➽❛ ❜ð✐
δC (x) =
0
♥➳✉ x ∈ C,
+∞
♥➳✉ x ∈ C
ỗ
t t epi C = C ì [0, +) t ỗ tr X ì R.
ỵ t tự s sỷ f : X (, +]
õ
f
ỗ ❦❤✐ ✈ỵ✐ ♠å✐
λi ≥ 0 (i = 1, m)✱
m
λi = 1,
i=1
∀x1 , x2 , ..., xm ∈ X,
f (λ1 x1 + ... + λm xm ) ≤ λ1 f (x1 ) + ... + λm f (xm ).
✶✵
✭✶✳✷✮
✶✳✷ ❍➔♠ ❧✐➯♥ ❤đ♣ ✈➔ ♠ët sè t➼♥❤ ❝❤➜t
❚r♦♥❣ ♠ư❝ ♥➔② ❝❤ó♥❣ tỉ✐ ♥❤➢❝ ❧↕✐ ❦❤→✐ ♥✐➺♠ ❤➔♠ ❧✐➯♥ ❤đ♣ ✈➔ ♠ët sè t➼♥❤
❝❤➜t✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ♠ư❝ ✤÷đ❝ t❤❛♠ ❦❤↔♦ tø t➔✐ ❧✐➺✉ ❬✶❪✳
✣à♥❤ ♥❣❤➽❛ ✶✳✸✳ ❈❤♦ f ❧➔ ♠ët ❤➔♠ ①→❝ ✤à♥❤ tr➯♥ X ✳ ❍➔♠ f ∗ ①→❝ ✤à♥❤
tr➯♥ X ∗ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ❜ð✐
f ∗ (x∗ ) = sup{ x∗ , x − f (x)}
x∈X
✭✶✳✸✮
✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ❧✐➯♥ ❤ñ♣ ❝õ❛ ❤➔♠ f ✳
❚ø ✭✶✳✸✮ t❛ ❝â f ∗(x∗) ≥
x∗ , x − f (x)✱
✈ỵ✐ ♠å✐ x ∈ X ✱ ❤❛②
f ∗ (x∗ ) + f (x) ≥ x∗ , x , ∀x ∈ X.
✭✶✳✹✮
❇➜t ✤➥♥❣ t❤ù❝ ✭✶✳✹✮ ✤÷đ❝ ❣å✐ ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ❨♦✉♥❣✲❋❡♥❝❤❡❧✳
✣à♥❤ ♥❣❤➽❛ ✶✳✹✳ ❍➔♠ f ∗∗ = (f ∗)∗✱ tù❝ ❧➔
f ∗∗ (x) = sup { x∗ , x − f ∗ (x∗ )}
x∗ ∈X ∗
✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ❧✐➯♥ ❤đ♣ t❤ù ❤❛✐ ❝õ❛ f ✳
❱➼ ❞ö ✶✳✸✳ ❈❤♦ ❤➔♠ ❛❢❢✐♥❡ f (x) =
x∗ , x + α
✈ỵ✐ x ∈ X ✳ ❑❤✐ ✤â
f ∗ (x∗ ) = sup{ x∗ , x − x∗0 , x − α}
x
= sup{ x∗ − x∗0 , x − α}
x
−α, ♥➳✉ x∗ = x∗0 ,
=
+∞, ♥➳✉ x = x0 .
ử ỗ t❤÷í♥❣ f (x) = ex, x ∈ R✳ ❑❤✐ ✤â ❤➔♠ ❧✐➯♥
❤ñ♣ t❤ù ♥❤➜t ❝õ❛ f ❧➔
f ∗ (x∗ ) = sup{ x∗ , x − f (x)} = sup{x∗ x − ex }.
x
x
✶✶
◆➳✉ x∗ = 0 t❤➻ f ∗(x∗) = f ∗(0) = 0.
◆➳✉ x∗ < 0 t❤➻ f ∗(x∗) = +∞.
◆➳✉ x∗ > 0✳ ❳➨t ❤➔♠ sè ϕ(x) = x∗x − ex✳ ❚❛ ❝â ϕ (x) = x∗ − ex✱ ❣✐↔✐
♣❤÷ì♥❣ tr➻♥❤ ϕ (x) = 0 t❛ ✤÷đ❝ x = ln x∗. ❍➔♠ sè ϕ(x) ✤↕t ❝ü❝ ✤↕✐ t↕✐
✤✐➸♠ ♥➔② ✈➻ ϕ”(x) = −ex < 0✱ ✈ỵ✐ ♠å✐ x✳ ❱➟②
0
∗ ∗
f (x ) = +∞
x∗ ln x∗ − x∗
♥➳✉ x∗ = 0,
♥➳✉ x∗ < 0,
♥➳✉ x∗ > 0.
❚➼♥❤ t♦→♥ t÷ì♥❣ tü t❛ t❤✉ ✤÷đ❝ ❤➔♠ ❧✐➯♥ ❤đ♣ t❤ù ❤❛✐ ❝õ❛ f ♥❤÷ s❛✉
f ∗∗ (x) = sup{ x∗ , x − f ∗ (x∗ )} = sup{x∗ x − x∗ ln x∗ + x∗ } = ex , ∀x ∈ R.
x∗
x∗
❚✐➳♣ t❤❡♦✱ t❛ ♥❤➢❝ ❧↕✐ ♠ët sè t➼♥❤ ❝❤➜t ❝õ❛ ❤➔♠ ❧✐➯♥ ❤ñ♣✳ ❚❛ ♥â✐ f > g ❝â
♥❣❤➽❛ ❧➔ f (x) > g(x) ✈ỵ✐ ♠å✐ x ∈ X ✳
▼➺♥❤ ✤➲ ✶✳✺✳ ❇➜t ✤➥♥❣ t❤ù❝ f ≥ f ∗∗ ✤ó♥❣ ✈ỵ✐ ♠å✐ ❤➔♠ f ✳
❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ❝â f ∗∗(x) = supx{ x∗, x − f ∗(x∗)} ≤ f (x) ✭❞♦ ❜➜t
✤➥♥❣ t❤ù❝ ❨♦✉♥❣✲❋❡♥❝❤❡❧✮✳
✣à♥❤ ♥❣❤➽❛ ✶✳✺✳ ❍➔♠ f ✤÷đ❝ ❣å✐ ✤â♥❣ ♥➳✉ epi f ❧➔ t➟♣ ✤â♥❣ tr♦♥❣ X × R✳
✣à♥❤ ♥❣❤➽❛ ✶✳✻✳ ❍➔♠ f ✤÷đ❝ ❣å✐ ❧➔ ♥û❛ ❧✐➯♥ tư❝ ữợ s t x X
ồ > 0 tỗ t U N (x) s f (x ) ≥ f (x) − ε ✈ỵ✐ ♠å✐ x
◆➳✉ f ❧✳s✳❝✳ t↕✐ ♠å✐ ✤✐➸♠ x ∈ X t❤➻ f ✤÷đ❝ ❣å✐ ❧➔ ❧✳s✳❝✳ tr➯♥ X ✳
∈ U.
◆❤➟♥ ①➨t ✶✳✶✳ ❍➔♠ f ❧✳s✳❝✳ tr➯♥ X ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ f ✤â♥❣ ✈➔ dom f ❝ơ♥❣
✤â♥❣✳ ❱➼ ❞ư ✤ì♥ ❣✐↔♥ X = R, f (x) = x1 ✈ỵ✐ x > 0 ✈➔ f (x) = +∞ ✈ỵ✐ ♠å✐
x ❦❤ỉ♥❣ ➙♠✱ ❝â epi f ✤â♥❣✱ t✉② ♥❤✐➯♥ f ❦❤æ♥❣ ❧✳s✳❝✳ tr➯♥ X ✭❦❤æ♥❣ ❧✳s✳❝✳
t↕✐ x = 0✮✳
✶✷
▼➺♥❤ ✤➲ ✶✳✻✳ ❈❤♦ f ❧➔ ♠ët ❤➔♠ ①→❝ ✤à♥❤ tr X õ ủ
f
ỗ ✤â♥❣ ✈ỵ✐ tỉ♣ỉ ②➳✉∗ tr➯♥ ❦❤ỉ♥❣ ❣✐❛♥ X ∗✳
❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛✱ f ∗ ❧➔ ❝❤➦♥ tr➯♥ ❝õ❛ ❤å
f ỗ ỡ ỳ f ∗ ❧➔ ❝❤➦♥ tr➯♥ ❝õ❛ ❝→❝ ❤➔♠ ❧✐➯♥ tö❝ x∗ −→
x∗ , x − f (x) (x ∈ dom f )✳ ❱➻ ✈➟② f ∗ ✤â♥❣ ✈ỵ✐ tỉ♣ỉ ②➳✉∗ t õ
tữỡ ữỡ ợ t ỷ tử ữợ
ỵ ỵ r f ❤➔♠ ①→❝ ✤à♥❤ tr➯♥ X ✱
❦❤æ♥❣ ♥❤➟♥ ❣✐→ trà
✈➔ ✤â♥❣✳
−∞✳
❑❤✐ õ
f = f
f
ỗ
ữợ ừ ỗ
sỷ f ởt ỗ tữớ tr ổ
ỗ ♣❤÷ì♥❣ X ✈➔ x0 ∈ domf ✳ ▼ët ♣❤✐➳♠ ❤➔♠ x
ữợ rt ừ f t x0
X
ữủ ồ
f (x) ≥ f (x0 ) + x∗ , x − x0 , x X.
ủ tt ữợ rt ừ f t x0 ữủ ồ ữợ ừ
f t x0 ỵ f (x0 )✳ ❑❤✐ ✤â
∂f (x0 ) = {x∗ ∈ X ∗ | f (x) − f (x0 ) ≥ x∗ , x x0 , x X}.
ữợ x0 ∈/ domf t❤➻ ∂f (x0) = ∅✳
❱➲ ♠➦t ❤➻♥❤ ❤å❝✱ tứ ữợ t t r ❛❢❢✐♥❡
ϕ(x) := f (x0 ) + x∗ , x − x0 , x X
õ ỗ t ởt s ♣❤➥♥❣ tü❛ ❝õ❛ epif t↕✐ ✤✐➸♠ (x0, f (x0)).
✶✸
❱➼ ❞ư ✶✳✺✳ ❳➨t ❤➔♠ ❝❤➾ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ tr ử C
t ỗ x0 ∈ C t❤➻
∂δC (x0 ) = {x∗ ∈ X ∗ | x∗ , x − x0 ≤ 0, ∀x ∈ C} = NC (x0 ),
ð ✤â NC (x0) = {x∗ X |
ừ t ỗ C t x0
x , x − x0 ≤ 0, ∀x ∈ C}
❧➔ ♥â♥ ♣❤→♣ t✉②➳♥
❱➼ ❞ư ✶✳✻✳ ❈❤♦ X ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✱ ϕ : X → R+ ❧➔ ❤➔♠ ❝❤✉➞♥
❝õ❛ X ✱ tù❝ ❧➔ ϕ(x) = ||x||✳ ❑❤✐ ✤â
∂ϕ(¯
x) =
{x∗ ∈ X ∗ | ||x∗ || ≤ 1} = B X ∗ (0, 1)
♥➳✉
x¯ = 0,
{x∗ ∈ X ∗ | ||x∗ || = 1, x∗ , x
¯ = ||¯
x||}
♥➳✉
x¯ = 0.
▼➺♥❤ ữợ f (x0) t ỗ õ
ỵ tr f ỗ tữớ
tử t ởt ♥➔♦ ✤â✱ t❤➻ t↕✐ ♠å✐ ✤✐➸♠ x0 ∈ int(domf )✱ f (x0)
rộ ỗ t
ởt số t q ờ trủ
ỵ tr sỷ f ỗ tữớ
tr X x ∈ dom f ✳ ❑❤✐ ✤â✿
x∗ ∈ ∂f (¯
x) ⇔ f (¯
x) + f ∗ (x∗ ) = x∗ , x¯ .
❈❤ù♥❣ ♠✐♥❤✳ ●✐↔ sû x∗ ∈ ∂f (¯x)✳ õ t ữợ
t õ
f (x) − f (¯
x) ≥ x∗ , x − x¯ , ∀ x ∈ X.
✶✹
tữỡ ữỡ ợ
f (x) f (
x) x∗ , x − x∗ , x¯ , ∀ x ∈ X
⇔ x∗ , x¯ − f (¯
x) ≥ x∗ , x − f (x), ∀ x ∈ X.
▲➜② ✧s✉♣✧ ❤❛✐ ✈➳ t❤❡♦ x ∈ X t❛ ✤÷đ❝
x∗ , x¯ − f (¯
x) ≥ sup{ x∗ , x − f (x)}.
x∈X
❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ ❧✐➯♥ ❤ñ♣ t❛ ❝â sup{ x∗, x
x∈X
✤â ✭✶✳✺✮ t÷ì♥❣ ✤÷ì♥❣
✭✶✳✺✮
− f (x)} = f ∗ (x∗ )✳
f ∗ (x∗ ) + f (¯
x) ≤ x∗ , x¯ .
❉♦
✭✶✳✻✮
▼➦t ❦❤→❝✱ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❨♦✉♥❣✲❋❡♥❝❤❡❧ t❛ ❝â
f ∗ (x∗ ) + f (¯
x) ≥ x∗ , x¯ .
✭✶✳✼✮
❚ø ✭✶✳✻✮ ✈➔ ✭✶✳✼✮ s✉② r❛
f ∗ (x∗ ) + f (¯
x) = x∗ , x¯ .
◆❣÷đ❝ ❧↕✐✱ ❣✐↔ sû f ∗(x∗) + f (¯x)
❋❡♥❝❤❡❧✱ t❛ ❝â
= x∗ , x¯ .
❚❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❨♦✉♥❣✲
f ∗ (x∗ ) + f (¯
x + td) ≥ x∗ , x¯ + td , ∀ t > 0, ∀ d ∈ X
⇔ f (¯
x + td) ≥ x∗ , x¯ − f ∗ (x∗ ) + t x∗ , d , ∀ t > 0, ∀ d ∈ X.
❈❤✐❛ ❝↔ ❤❛✐ ✈➳ ❝❤♦ t > 0 t❛ ✤÷đ❝
f (¯
x + td) − f (¯
x)
≥ x∗ , d , ∀ t > 0, ∀ d ∈ X.
t
❉♦ ✤â
f (¯
x + td) − f (¯
x)
≥ x∗ , d , ∀ t > 0, ∀ d ∈ X,
t>0
t
inf
✶✺
❤❛②
f (¯
x + td) ≥ x∗ , d , ∀ d ∈ X.
❉♦ ✤â x∗ ∈ ∂f (¯x)✳
▼➺♥❤ ✤➲ ✶✳✽✳ ✭①❡♠ ❬✸✱ ▼➺♥❤ ✤➲ ✷✳✶✶✽❪✮ ❈❤♦ f : X → R ỗ
õ s ✤ó♥❣✳
✭✐✮ ❱ỵ✐ ♠é✐ x ∈ X ♠➔ f ∗∗(x) ❤ú✉ ❤↕♥✱ ❦❤✐ ✤â
∂f ∗∗ (x) = argmax{ x∗ , x − f ∗ (x∗ ), x∗ ∈ X ∗ }.
✭✶✳✽✮
✭✐✐✮ f ữợ t x t f ∗∗(x) = f (x).
✭✐✐✐✮ ◆➳✉ f ∗∗(x) = f (x) ✈➔ ❣✐→ trà ♥➔② ❤ú✉ ❤↕♥✱ ❦❤✐ ✤â ∂f (x) = f (x).
ự ử ỵ ✶✳✹ ❝❤♦ tr÷í♥❣ ❤đ♣ f ∗ ✈➔ f ∗∗ t❛ ✤÷đ❝
x∗ ∈ ∂f ∗∗ (¯
x) ⇔ f ∗∗ (¯
x) + f ∗ (x∗ ) = x∗ , x .
✭✶✳✾✮
▼➦t ❦❤→❝✱ t❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ ❧✐➯♥ ❤ñ♣ t❤ù ❤❛✐ ❝õ❛ f ✱ t❛ ❝â
f ∗∗ (x) = sup { x∗ , x − f ∗ (x∗ )}.
x∗ ∈X ∗
❉♦ ✤â t❛ t❤✉ ✤÷đ❝ ✭✶✳✽✮✳
✭✐✐✮ ❚❛ ❧✉ỉ♥ ❝â f (x) ≥ f ∗∗(x) ✈ỵ✐ ♠å✐ x ∈ X ✳ ◆➳✉ f ❦❤↔ ữợ
õ
x f (x) f (x) + f ∗ (x∗ ) = x∗ , x .
❉♦ ✤â f (x) ≤ f ∗∗(x). ❱➟② f ∗(x) = f ∗∗(x).
✭✐✐✐✮ ❚ø ✭✶✳✾✮ ✈➔ ✭✶✳✶✵✮ t❛ t❤✉ ✤÷đ❝ ✤✐➲✉ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤✳
✶✻
✭✶✳✶✵✮
ữỡ
ởt số ỵ tt ố
ố ♥❣➝✉ ❧➔ ♣❤÷ì♥❣ ♣❤→♣ ♠➔ ♠é✐ ❜➔✐ t♦→♥ ❝ü❝ t✐➸✉ t ố ữủ
t tữỡ ự ợ t ỹ ✤↕✐ ✭❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉✮ s❛♦ ❝❤♦ ♥❤í ✈✐➺❝
❣✐↔✐ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ t❛ ❝â t❤➸ ①→❝ ✤à♥❤ ❤❛② ✤→♥❤ ❣✐→ ✤÷đ❝ ❣✐→ trà tè✐ ÷✉
❝õ❛ ❜➔✐ t♦→♥ ❣è❝✳ ❈â ỹ t ố ỵ t❤✉②➳t
✤è✐ ♥❣➝✉✳ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ❤❛✐ ❝→❝❤ t✐➳♣ ❝➟♥ q✉❡♥
t❤✉ë❝✿ ✣è✐ ♥❣➝✉ ❧✐➯♥ ❤ñ♣ ✈➔ ✣è✐ r ũ ợ ử tr
t t ữợ ừ tờ ỗ ỷ tử ữợ
tữớ ở ừ ữỡ ữủ tờ ủ ✈➔ ❞✐➵♥ ❣✐↔✐ ❝❤✐ t✐➳t tø
♠ö❝ ✷✳✺ ❉✉❛❧✐t② ❚❤❡♦r② ❝õ❛ ❝✉è♥ s→❝❤ ❝❤✉②➯♥ ❦❤↔♦ ❬✸❪✳
✷✳✶ P❤→t ❜✐➸✉ ❜➔✐ t♦→♥
●✐↔ sû X, U, Y ổ tổổ ỗ ♣❤÷ì♥❣✳ X ∗, U ∗, Y ∗ ❧➔ ❝→❝
❦❤ỉ♥❣ ❣✐❛♥ tỉ♣ỉ ✤è✐ ♥❣➝✉ t÷ì♥❣ ù♥❣✳ ❳➨t ❜➔✐ t♦→♥ tè✐ ÷✉
min f (x),
x∈X
✶✼
✭P✮
õ f : X R ỗ ❝❤➼♥❤ t❤÷í♥❣✳ ❚❛ ❣✐↔ sû r➡♥❣ ❜➔✐ t♦→♥ ✭P✮
✤÷đ❝ ♥❤ó♥❣ ✈➔♦ ❤å ❝→❝ ❜➔✐ t♦→♥ tè✐ ÷✉ ❝â t❤❛♠ sè s❛✉✿
min ϕ(x, u),
x∈X
✭Pu✮
ð ✤â ϕ : X × U → R ỗ tữớ u = 0 ❜➔✐ t♦→♥ (P0)
trị♥❣ ✈ỵ✐ ❜➔✐ t♦→♥ ✭P✮✱ tù❝ ❧➔ ϕ(·, 0) = f (·)✳
❍➔♠ ❣✐→ trà tè✐ ÷✉ t÷ì♥❣ ù♥❣ ợ t (Pu) ữủ
v(u) := inf (x, u) .
x∈X
❚❛ ♥â✐ r➡♥❣ ❜➔✐ t♦→♥ ✭P✮ ✭t÷ì♥❣ ù♥❣ (Pu)✮ ❧➔ t÷ì♥❣ t❤➼❝❤ ♥➳✉ ♠✐➲♥ ❤ú✉
❤✐➺✉ ❝õ❛ f (·) ✭t÷ì♥❣ ù♥❣ ϕ(·, u)✮ ❦❤→❝ ré♥❣✳ ❘ã r➔♥❣ (Pu) ❧➔ t÷ì♥❣ t❤➼❝❤
♥➳✉ ✈➔ ❝❤➾ ♥➳✉ v(u) < +∞.
❙❛✉ ✤➙② ❧➔ ♠ët sè t➼♥❤ ❝❤➜t ❝õ❛ ❤➔♠ ❣✐→ trà tè✐ ÷✉ v(·).
▼➺♥❤ (x, u) ỗ õ tr tố ữ v(Ã) ụ
ỗ
ự x1, x2 ∈ X, u1, u2 ∈ U ❜➜t ❦➻✱ ợ ồ (0, 1)
t ỗ ừ ϕ(x, u) ♥➯♥ t❛ ❝â
λϕ(x1 , u1 ) + (1 − λ)ϕ(x2 , u2 ) ≥ ϕ(λx1 + (1 − λ)x2 , λu1 + (1 − λ)u2 )
≥ v(λu1 + (1 − λ)u2 ).
▲➜② inf ❤❛✐ ✈➳ t❤❡♦ x1, x2 t❛ ✤÷đ❝
λv(u1 ) + (1 − λ)v(u2 ) ≥ v(λu1 + (1 )u2 ).
v(Ã) ỗ
t ✷✳✶✳ ❍➔♠ ❣✐→ trà tè✐ ÷✉ v(·) ❦❤ỉ♥❣ ❝❤➼♥❤ t❤÷í♥❣ ỷ
tử ữợ t (x, u) ỗ tữớ ỷ tử
ữợ
(x, u) =
ợ ồ
x, u R
x,
ex − u ≤ 0
+∞,
tr♦♥❣ ❝→❝ tr÷í♥❣ ❤đ♣ ❝á♥ ❧↕✐,
❱➻
❧➔ ỗ tữớ tử õ
: R ì R R {+} ỗ tữớ ỷ tử ữợ õ
f (x) = x
v(u) = inf ϕ(x, u) =
x∈X
−∞,
♥➳✉ u > 0,
+∞,
♥➳✉ u ≤ 0.
❉♦ ✤â v(Ã) ổ tữớ ổ ỷ tử ữợ
✷✳✷✳ ❍➔♠ ❧✐➯♥ ❤đ♣ t❤ù ♥❤➜t ❝õ❛ v(·) ✤÷đ❝ ❝❤♦ ❜ð✐ ❝æ♥❣ t❤ù❝
v ∗ (u∗ ) = ϕ∗ (0, u∗ ),
tr♦♥❣ ✤â
ϕ∗ (x∗ , u∗ ) =
{ x∗ , x + u∗ , u − ϕ(x, u)} .
sup
(x,u)∈X×U
✭✷✳✶✮
❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ ❧✐➯♥ ❤ñ♣✱ t❛ ❝â
v ∗ (u∗ ) = sup
u∗ , u −
=
sup
inf
ϕ(x, u)
(x,u)∈X×U
u∈U
u∗ , u − ϕ(x, u)
(x,u)∈X×U
= ϕ∗ (0, u∗ ).
❚❤➟t ✈➟②✱ ❞♦ ϕ(x, u) ≥ x∈X
inf ϕ(x, u)✱ ♥➯♥ −ϕ(x, u) ≤ − inf ϕ(x, u)✱ s✉② r❛
x∈X
sup
u∈U
u∗ , u −
inf
ϕ(x, u)
≤
(x,u)∈X×U
sup
(x,u)∈X×U
✶✾
u∗ , u − ϕ(x, u) .
✭✷✳✷✮
ữủ
sup
{ u , u (x, u)}
(x,u)XìU
sup { u∗ , u − ϕ(x, u)} , ∀u ∈ U
x∈X
= u∗ , u + sup(−ϕ(x, u)), ∀u ∈ U
x∈X
= u∗ , u − inf ϕ(x, u), ∀u ∈ U.
x∈X
❉♦ ✤â
sup
u∈U
u∗ , u −
ϕ(x, u) ≥
inf
(x,u)∈X×U
sup
u∗ , u − ϕ(x, u) .
(x,u)XìU
ứ t ủ ợ t t ữủ ✤✐➲✉ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤✳
▼➺♥❤ ✤➲ ✷✳✸✳ ❍➔♠ ❧✐➯♥ ❤ñ♣ t❤ù ❤❛✐ ❝õ❛ v(·) ✤÷đ❝ ❝❤♦ ❜ð✐ ❝ỉ♥❣ t❤ù❝
v ∗∗ (u) = sup { u∗ , u − ϕ∗ (0, u∗ )}.
u∗ ∈U ∗
❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ ❧✐➯♥ ❤ñ♣ t❤ù ❤❛✐ ❝õ❛ v✱ t❛ ❝â
v ∗∗ (u) = sup { u∗ , u − v ∗ (u∗ )}.
u∗ ∈U ∗
❚ø ✤â✱ t❤❡♦ ▼➺♥❤ ✤➲ ✷✳✷ t❛ ❝â ✤✐➲✉ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤✳
✷✳✷ ✣è✐ ♥❣➝✉ ❧✐➯♥ ❤ñ♣
❇➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ❝õ❛ ❜➔✐ t♦→♥ ❣è❝ (Pu) ❧➔
max
{ u∗ , u − ϕ∗ (0, u∗ )}.
∗
∗
u ∈U
✭Du✮
❚r÷í♥❣ ❤đ♣ r✐➯♥❣ ❦❤✐ u = 0✱ ❜➔✐ t♦→♥ (D0) trð t❤➔♥❤ ❜➔✐ t♦→♥
max
{−ϕ∗ (0, u∗ )},
∗
∗
u ∈U
✷✵
✭❉✮
✤÷đ❝ ①❡♠ ♥❤÷ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ❝õ❛ ❜➔✐ t♦→♥ P ỵ t tt
tr tố ữ ❝õ❛ ❜➔✐ t♦→♥ (Pu) ✭t÷ì♥❣ ù♥❣ ❝õ❛ ❜➔✐ t♦→♥ (Du)✮ ❧➔ val(Pu)
✭t÷ì♥❣ ù♥❣ val(Du)✮✳ ❑❤✐ ✤â t❛ ❝â val(Pu) = v(u) ✈➔ val(Du) = v∗∗(u)✳
❱➻ v(u) ≥ v∗∗(u)✱ ✈ỵ✐ ♠å✐ u ✭❜➜t ✤➥♥❣ t❤ù❝ ❨♦✉♥❣✲❋❡♥❝❤❡❧✮ ♥➯♥ t❛ ❧✉æ♥ ❝â
val(Pu ) ≥ val(Du ).
▼➺♥❤ ✤➲ ✷✳✹✳ ●✐↔ sû ϕ(x, u) ❧➔ ỗ tữớ v(u) ỳ
õ t ừ t ố (Du) ỵ S(Du) trị♥❣
✈ỵ✐ ∂v∗∗(u).
❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ▼➺♥❤ ✤➲ ✶✳✽✱ t❛ ❝â
∂v ∗∗ (u) = argmax{ u∗ , u − v ∗ (u∗ ), u∗ ∈ U ∗ }.
❍ì♥ ♥ú❛✱ ✈➻ v∗(u∗) = ϕ∗(0, u∗). ❉♦ ✤â t❛ ❝â t➟♣ ♥❣❤✐➺♠ ❝õ❛ t ố
trũ ợ v(u).
ỵ s ú
trữợ u U, v(u) = ∅✱ ❦❤✐ ✤â val(Pu) = val(Du) ✈➔ t➟♣
♥❣❤✐➺♠ tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ (Du) trị♥❣ ✈ỵ✐ ∂v(u)✳
✭✐✐✮ ◆➳✉ val(Pu) = val(Du) ✈➔ ❤ú✉ ❤↕♥✱ ❦❤✐ ✤â S(Du) = ∂v(u).
✭✐✐✐✮ ◆➳✉ val(Pu) = val(Du) ✈➔ x¯ ∈ X, u¯∗ ∈ U ∗ ❧➔ ♥❣❤✐➺♠ t÷ì♥❣ ù♥❣
❝õ❛ ❜➔✐ t♦→♥ (Pu) ✈➔ (Du)✳ ❑❤✐ ✤â ✤✐➲✉ ❦✐➺♥ s❛✉ ✤➙② ✤ó♥❣✱
ϕ(¯
x, u) + ϕ∗ (0, u¯∗ ) = u¯∗ , u .
ữủ tọ ợ x ✈➔ u¯∗ t÷ì♥❣ ù♥❣ ❧➔ ♥❣❤✐➺♠
tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ (Pu) ✈➔ (Du)✳ ❑❤✐ ✤â val(Pu) = val(Du).
❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❨♦✉♥❣✲❋❡♥❝❤❡❧✱ ♥➳✉ ∂v(u) ❦❤→❝ ré♥❣
✷✶
t❤➻ t❛ ❝â
v(u) ≥ u∗ , u − v ∗ (u∗ ).
❚❤❡♦ ▼➺♥❤ ✤➲ ✷✳✷✱
v(u) = u∗ , u − v ∗ (u∗ ) ♥➳✉
✈➔ ❝❤➾ ♥➳✉ u∗ ∈ ∂v(u).
❱➻ v∗(u∗) = ϕ∗ (0, u∗)✱ ✤✐➲✉ ♥➔② s✉② r❛ r➡♥❣ u∗ ❧➔ ♠ët ♥❣❤✐➺♠ tè✐ ÷✉
❝õ❛ (Du) ♥➳✉ u∗ ∈ ∂v(u) ✈➔ tr♦♥❣ tr÷í♥❣ ❤đ♣ ✤â val (Pu) = val (Du)✱
✈➔ ♥❣÷đ❝ ❧↕✐✳ ❉♦ ✤â ✭✐✮ ✈➔ ✭✐✐✮ ①↔② r❛✳ ❍ì♥ ♥ú❛✱ t❤❡♦ ▼➺♥❤ ✤➲ ✷✳✹✱ t❛ ❝â
S(Du ) = v (u) v(Ã) ữợ t↕✐ u✱ ♥➯♥ tø ▼➺♥❤ ✤➲ ✶✳✽
t❛ ❝ô♥❣ ❝â ∂v∗∗(u) = ∂v(u)✱ ✈➔ ❞♦ ✤â ✭✐✮ ①↔② r❛✳ ◆➳✉ v∗∗(u) = v(u)✱ t❤➻
♠ët ❧➛♥ ♥ú❛ ∂v∗∗(u) = ∂v(u)✱ ✈➔ ❦❤✐ ✤â ✭✐✐✮ ①↔② r❛✳
◆➳✉ val (Pu) = val (Du) ✈➔ ❣✐→ trà ♥➔② ❤ú✉ ❤↕♥✱ t❤➻ rã r➔♥❣ tø
♥❤ú♥❣ ❧➟♣ ❧✉➟♥ tr➯♥✱ x¯ ∈ X ✈➔ u¯∗ ∈ U ∗ ❧➛♥ ❧÷đt ❧➔ ❝→❝ ♥❣❤✐➺♠ tè✐ ÷✉ ❝õ❛
(Pu ) ✈➔ (Du ) ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ ✤✐➲✉ ❦✐➺♥ ✭✷✳✹✮ ✤ó♥❣✳ ❍ì♥ ♥ú❛✱ t❛ ❝ơ♥❣ t❤➜②
r➡♥❣✱ ♥➳✉ ✭✷✳✹✮ ✤ó♥❣ t❤➻ val (Pu) = val (Du)✱ ✈➔ ❞♦ ✤â ✭✐✐✐✮ ①↔② r❛ ✳
✣à♥❤ ♥❣❤➽❛ ✷✳✶✳ ❚❛ ♥â✐ r➡♥❣ ❜➔✐ t♦→♥ (Pu) t➽♥❤ ♥➳✉ val(Pu) ❤ú✉ ❤↕♥ ✈➔
❤➔♠ ❣✐→ trà tè✐ ÷✉ v(·) ữợ t u v(u) =
ứ ỵ t õ t q s
●✐↔ sû r➡♥❣ val(Pu) ❤ú✉ ❤↕♥✳ ◆➳✉ (Pu) t➽♥❤✳ ❑❤✐ ✤â ❦❤æ♥❣
❝â ❦❤♦↔♥❣ ❝→❝❤ ✤è✐ ♥❣➝✉ ❣✐ú❛ (Pu) ✈➔ (Du)✱ ✈➔ t➟♣ ♥❣❤✐➺♠ tè✐ ÷✉ ❝õ❛ ❜➔✐
t♦→♥ ✤è✐ ♥❣➝✉ (Du) ❦❤→❝ ré♥❣✳ ◆❣÷đ❝ ❧↕✐✱ ♥➳✉ ❦❤♦↔♥❣ ❝→❝❤ ✤è✐ ♥❣➝✉ ❣✐ú❛
(Pu ) ✈➔ (Du ) ❜➡♥❣ ❦❤æ♥❣✱ t❤➻ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ (Du ) ❝â ♠ët ♥❣❤✐➺♠ tè✐ ÷✉
♥➳✉ ✈➔ ❝❤➾ ♥➳✉ (Pu) t➽♥❤✳
✷✷
ỵ ỵ ố sỷ r (x, u) ỗ tữớ
tr tố ữ v(u) = val(Pu) ❤ú✉ ❤↕♥ ✈➔ ❧✐➯♥ tö❝ t↕✐ u¯ ∈ U ✳ ❑❤✐ ✤â
val(Pu¯ ) = val(Du¯ )✱ S(Du¯ ) = ∅✱ ✈➔ ❤ì♥ ♥ú❛ S(Du¯ ) = ∂v(¯
u)✳
❈❤ù♥❣ v(Ã) ỗ tử t u t ỵ t õ v(u)
rộ õ t ỵ t t ữủ ❝❤ù♥❣ ♠✐♥❤✳
✣✐➲✉ ❦✐➺♥ v(·) ❧✐➯♥ tư❝ t↕✐ u¯ ✤÷đ❝ ①❡♠ ♥❤÷ ♠ët ✤✐➲✉ ❦✐➺♥ ❝❤➼♥❤ q✉②✳
❈â t❤➸ ✈✐➳t ✤✐➲✉ ❦✐➺♥ ữợ tữỡ ữỡ ử v(Ã)
ỗ val(Pu) ỳ t tữỡ ữỡ ợ val(Pu)
tr ởt ❝õ❛ u¯✳ ❍ì♥ ♥ú❛✱ ♥➳✉ U ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❤ú✉ ❤↕♥
❝❤✐➲✉ t❤➻ v(·) ❧✐➯♥ tö❝ t↕✐ u¯ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ u¯ ∈ int(dom v)✳ ◆➳✉ X, U ❧➔
❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤➻ t❛ ❝â ❦➳t q✉↔ s❛✉✳
▼➺♥❤ ✤➲ ✷✳✻✳ ❈❤♦ X, U ❧➔ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ●✐↔ sû r
tữớ ỗ ỷ tử ữợ v(¯u) ❤ú✉ ❤↕♥✳ ❑❤✐ ✤â
v(·) ❧➔ ❧✐➯♥ tö❝ t↕✐ u¯ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ u¯ ∈ int(dom v).
ϕ(x, u)
❱➼ ❞ö ✷✳✶✳ ❈❤♦ x = (x1, x2) ∈ R2✱ u ∈ R ✈➔
ϕ(x, u) :=
x1 ,
−x1 + ex2 + u
+∞,
0,
tr♦♥❣ ❝→❝ trữớ ủ .
ợ ồ u R tt ừ ỵ tọ v(u) = u ✈ỵ✐
♠å✐ u ∈ R✳ ◆❣♦➔✐ r❛✱
ϕ∗ (0, u∗ ) := v ∗ (u∗ ) =
0,
u∗ = 1,
+∞,
tr♦♥❣ ❝→❝ tr÷í♥❣ ❤đ♣ ❦❤→❝❀
❞♦ ✈➟② ❦❤æ♥❣ ❝â ❦❤♦↔♥❣ ❝→❝❤ ✤è✐ ♥❣➝✉ ❣✐ú❛ (Pu) ✈➔ (Du)❀ ✈➔ S(Du) = {1}✳
✷✸
✷✳✸ ✣è✐ ♥❣➝✉ ▲❛❣r❛♥❣❡
❚r♦♥❣ ♠ư❝ ♥➔② ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ❝→❝❤ t✐➳♣ ❝➟♥ ✤è✐ ♥❣➝✉ ❞ị♥❣ ❤➔♠
▲❛❣r❛♥❣❡✳ P❤➛♥ ❝✉è✐ ❝❤ó♥❣ tỉ✐ ❝ơ♥❣ ❝❤➾ r❛ ♠è✐ q✉❛♥ ❤➺ ❣✐ú❛ ✤è✐ ♥❣➝✉ ❧✐➯♥
❤đ♣ ✭▼ư❝ ✷✳✷✮ ✈➔ ✤è✐ ♥❣➝✉ ▲❛❣r❛♥❣❡✳
❈❤♦ KX ⊂ X, KY ⊂ Y ❧➔ ❝→❝ t➟♣ ❤ñ♣ ❦❤→❝ ré♥❣ ❜➜t ❦➻✳ ❚❛ ①➨t ❝➦♣
❜➔✐ t♦→♥ ❣è❝ ✈➔ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ t❤ỉ♥❣ q✉❛ ❤➔♠ ▲ : KX × KY → R✱
✤÷đ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉
min sup
x∈KX y∈KY
▲(x, y),
✭P L✮
▲(x, y).
✭DL✮
max inf
yKY xKX
ồ r tữỡ ự ợ ❝→❝ ❜➔✐ t♦→♥ ð tr➯♥✳ ❍✐➺✉ sè ❣✐ú❛
val(P L ) − val(DL ) ✭❦❤✐ val(P L ) ✈➔ val(DL ) ❦❤ỉ♥❣ ❝ị♥❣ ♥❤➟♥ ❣✐→ trà ✈ỉ
❤↕♥✮ ✤÷đ❝ ❣å✐ ❧➔ ❦❤♦↔♥❣ ố tữỡ ự ợ t ố
ð tr➯♥✳ ❚❛ ♥â✐ r➡♥❣ (¯x, y¯) ∈ KX × KY ❧➔ ♠ët ✤✐➸♠ ②➯♥ ♥❣ü❛ ❝õ❛
❤➔♠ ▲(x, y) ♥➳✉ ▲(¯x, y¯) ∈ R ✈➔✿
▲(¯x, y) ≤ ▲(¯x, y¯) ≤ (x, y),
(x, y) KX ì KY .
ỵ ✭✐✮ ❚❛ ❝â val(DL) ≤ val(P L)✳ ❍ì♥ ♥ú❛ ❦❤♦↔♥❣ ❝→❝❤ ✤è✐
♥❣➝✉ val(DL) − val(P L) ✭♥➳✉ ♥â ①→❝ ✤à♥❤✮ ❧➔ ❦❤æ♥❣ ➙♠✳
✭✐✐✮ ❍➔♠ ▲(x, y) ❝â ♠ët ✤✐➸♠ ②➯♥ ♥❣ü❛ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ ❝→❝ ❜➔✐ t♦→♥ (DL)✈➔
(P L ) ❝â ❝ị♥❣ ❣✐→ trà tè✐ ÷✉ ✈➔ t➟♣ ♥❣❤✐➺♠ tè✐ ÷✉ ❝õ❛ ♠é✐ ❜➔✐ t♦→♥ ❧➔
❦❤→❝ ré♥❣✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔②✱ t➟♣ ❤đ♣ ❝→❝ ✤✐➸♠ ②➯♥ ♥❣ü❛ ✤÷đ❝ ❦➼ ❤✐➺✉
S(P L ) × S(DL )✳
✷✹