Họ vi xử lý 8051
Lời mở đầu
Vào năm 1971 tập đoàn Intel đã giới thiệu 8080, bộ vi xử lí thành công đầu tiên, tiếp đó không
lâu Motorola, RCA, MOS Technology và Zilog cũng đã giới thiệu các bộ vi xử lí tương tự : 6800, 1801,
6502 và Z80. Bản thân các vi mạch này tuy không có nhiều hiệu quả sử dụng nhưng khi là một phần
của một máy tinh đơn board (Single Board Computer), chúng trở thành thành phần trung tâm trong các
sản phẩm có ích dùng để nghiên cứu và thiết kế.
Năm 1976 Intel giới thiệu bộ vi điều khiển( Micro Controller) 8748, một chip tương tự như các
bộ vi xử lí và là chip đầu tiên trong họ vi điều khiển MCS-48. 8748 là một vi mạch chứa trên 17000
transistor bao gồm một CPU, 1K byte EPROM, 64 byte RAM, 27 chân xuất nhập và một bộ định thời 8
bit. Sự ra đời của IC này và các IC khác, của họ MCS-48 đã nhanh chóng trở thành chuẩn công nghiệp
trong các ứng dụng hướng điều khiển (Control Oriented Application).
Độ phức tạp, kích thước và khả năng của bộ vi điều khiển được tăng thêm môt bậc quan trọng
vào năm 1980 khi Intel công bố chip 8051, bộ vi điều khiển đầu tiên của họ vi điều khiển MCS-51. So
với 8048, chip 8051 chứa trên 60000 transistor bao gồm 4K byte ROM, 128 byte RAM, 32 đường xuất
nhập, 1 port nối tiếp và 2 bộ định thời 16 bit. Vi điều khiển 8051 cũng như họ vi điều khiển MCS-51 là
một trong những bộ vi điều khiển 8-bit mạnh và linh hoạt nhất, đã trở thành bộ vi điều khiển hàng đầu
trong những năm gần đây.
Những bộ vi xử lý dùng chung thường gặp như họ Intel x86 (8086, 80286, 80386, 80486, Pentium..) hoặc
họ 680x0 của Motorola (6800, 68010, 68020, 68030, 68040…). Những bộ vi xử lý này không có RAM, ROM
và không có các port I/O trên chip, do đố khi sử dụng thiết kế hệ thống phải bổ sung thêm RAM, ROM, I/O và
các bộ định thời (Timer/Counter) ngoài để cho chúng hoạt động được. Tuy việc này làm cho hệ thống cồng
kềnh, phức tạp và giá thành cao hơn nhưng chúng lại có ưu điểm là linh hoạt hơn so với vi điều khiển.
Trong khi đó với vi điều khiển nó có sẵn : 1 CPU( bộ vi xử lý) cùng 1 lượng cố định RAM,
ROM, các cổng I/O và Timer/Counter được tích hợp tất cả trên cùng 1 chip.
Mục lục
Bài 1: Kiến trúc họ vi xử lý 8051
1.1 Tổ chức bộ nhớ
1.2 Các thanh ghi đặc biệt
1.3 Truy xuất địa chỉ
1.4 Tập lệnh assembly
1.5 Câu hỏi kiểm tra
Bài 2. Các bài thực hành
2.1 Điều khiển Led
2.1.1 Điều khiển 1 led
2.1.2 Điều khiển nhiều led
2.1.3 Điều khiển lần lượt led
2.1.4 Các bài mở rộng
2.2 Giao tiếp với công tắc
2.2.1 Điều khiển bật tắt led
2.2.2 Led chạy khi nhấn công tắc
2.3 Điều khiển led 7 thanh
2.3.1 Cách hiển thị led 7 thanh
2.3.2 Phối hợp điều khiển các thanh
2.3.3 Điều khiển led 7 thanh hiện số
2.3.4 Điều khiển led 7 thanh hiện chữ
2.3.5 Điều khiển nhiều led 7 thanh 1
2.3.6 Điều khiển nhiều led 7 thanh 2
1. Kiến trúc vi điều khiển 8051
1.1 Tổ chức bộ nhớ
Các vi điều khiển thuộc họ 8051 đều tổ chức thành 2 không gian chương trình và dữ liệu, hình
1.1.1 và hình 1.1.2 sẽ mô tả điều này. Kiến trúc vi xử lý 8 bit của 8051 này cho phép truy nhập và
tính toán nhanh hơn đối với không gian dữ liệu nhờ việc phân chia 2 không gian bộ nhớ chương trình
và dữ liệu như trên. Tuy nhiên bộ nhớ ngoài được truy nhập bởi hệ thống 16 bit địa chỉ vẫn có thể
thực hiện nhờ thanh ghi con trỏ.
Bộ nhớ chương trình (ROM, EPROM) là bộ nhớ chỉ đọc, có thể mở rộng tối đa 64Kbyte. Vói họ vi
điều khiển 89xx, bộ nhớ chương trình được tích hợp sẵn trong chip có kích thước nhỏ nhất là 4kByte.
Với các vi điều khiển không tích hợp sẵn bộ nhớ chương trình trên chip, buộc phải thiết kế bộ nhớ
chương trình bên ngoài. Ví dụ sử dụng EPROM: 2764 (64Kbyte), khi đó chân PSEN phải ở mức tích
cực (5V).
Hình 1.1.1 Cấu trúc vi điều khiển 89C51
Bộ nhớ dữ liệu (RAM) tồn tại độc lập so với bộ nhớ chương trình. Họ vi điều khiển 8051 có bộ
nhớ dữ liệu tích hợp trên chip nhỏ nhất là 128byte và có thể mở rộng với bộ nhớ dữ liệu ngoài lên tới
64kByte. Với những vi điều khiển không tích hợp ROM trên chip thì vẫn có RAM trên chip là 128byte.
Khi sử dụng RAM ngoài, CPU đọc và ghi dữ liệu nhờ tín hiệu trên các chân RD và WR. Khi sử dụng cả
bộ nhớ chương trình và bộ nhớ dữ liệu bên ngoài thì buộc phải kết hợp chân RD và PSEN bởi cổng
logic AND để phân biệt tín hiệu truy xuất dữ liệu trên ROM hay RAM ngoài.
Bộ nhớ chương trình:
Hình 1.1.2 Cấu trúc bộ nhớ chương trình
Hình 1.1.3 Địa chỉ các ngắt trên bộ nhớ chương trình
Hình 1.1.2 mô tả cấu trúc bộ nhớ chương trình. Sau khi khởi động, CPU bắt đầu thực hiện chương
trình ở vị trí 0000H. Hình 1.1.3 mô tả địa chỉ ngắt mặc định trên bộ nhớ chương trình. Mối khi xảy ra
ngắt, con trỏ của CPU sẽ nhảy đến đúng địa chỉ ngắt tương ứng và thực thi chương trình tại đó. Ví
dụ ngắt ngoài 0 sẽ có địa chỉ là 0003H, khi xảy ra ngắt ngoài 0 thì con trỏ chương trình sẽ nhảy đến
đúng địa chỉ 0003H để thực thi chương trình tại đó. Nếu trong chương trình ứng dụng không xử
dụng đến ngắt ngoài 0 thì địa chỉ 0003H vẫn có thể dùng cho mục đích khác (sử dụng cho bộ nhớ
chương trình). Bởi vậy khi lập trình bằng ngôn ngữ Assembly, phần đầu chương trình bao giờ cũng
phải cho chương trình nhảy đến địa chỉ cao hơn địa chỉ chứa các ngắt và mã lệnh viết cho các ngắt
thì phải viết đúng địa chỉ của các ngắt tương ứng.
Bộ nhớ dữ liệu:
Hình 1.1.4 Cấu trúc bộ nhớ dữ liệu
Hình 1.1.4 mô tả cấu trúc bộ nhớ dữ liệu trong và bộ nhớ dữ liệu ngoài của họ vi điều khiển 8051. CPU sẽ
dùng đến các chân RD và WR khi truy cập đến bộ nhớ dữ liệu ngoài.
Hình 1.1.5 mô tả cấu trúc bộ nhớ dữ liệu trong chip, được chia thành 3 khối là 128 byte thấp, 128 byte cao và
128 byte đặc biệt.
Hình 1.1.5 Cấu trúc bộ nhớ trong
Hình 1.1.6 mô tả cấu trúc 128 byte thấp của bộ nhớ dữ liệu của họ vi điều khiển 8051. 32 byte
đầu tiên (00H-1FH) được sử dụng cho 4 bộ 8 thanh ghi R0-R7. Hai bit của thanh ghi đặc biệt PSW sẽ
lựa chọn 1 trong 4 bộ thanh ghi mà vi điều khiển sẽ dùng trong khi thực thi chương trình.
Hình 1.1.6 Cấu trúc 128 byte thấp của bộ nhớ dữ liệu trong
8051 chứa 210 vị trí bit được định địa chỉ trong đó 128 bit chứa trong các byte ở địa chỉ từ 20H đến
2FH (16 byte x 8 bit = 128 bit) và phần còn lại chứa trong các thanh ghi đặc biệt. Ngoài ra 8051 còn có
các port xuất/nhập có thể định địa chỉ từng bit, điều này làm đơn giản việc giao tiếp bằng phần mềm
với các thiết bị xuất/nhập đơn bit.
Vùng RAM đa mục đích có 80 byte đặt ở địa chỉ từ 30H đến 7FH, bên dưới vùng này từ địa chỉ 00H
đến 2FH là vùng nhớ có thể được sử dụng tương tự. Bất kỳ vị trí nhớ nào trong vùng RAM đa mục
đích đều có thể được truy xuất tự do bằng cách sử dụng các kiểu định địa chỉ trực tiếp hoặc gián tiếp.
Bất kỳ vị trí nhớ nào trong vùng RAM đa mục đích đều có thể được truy xuất tự do bằng cách sử
dụng các kiểu định địa chỉ trực tiếp hoặc gián tiếp.
Cũng như các thanh ghi từ R0 đến R7, ta có 21 thanh ghi chức năng đặc biệt SFR chiếm phần trên
của Ram nội từ địa chỉ 80H đến FFH. Cần lưu ý là không phải tất cả 128 địa chỉ từ 80H đến FFH đều
được định nghĩa mà chỉ có 21 địa chỉ được định nghĩa.
Hình 1.1.7. 128 byte cao của bộ nhớ dữ liệu.
1.2. Các thanh ghi đặc biệt
8051 có 21 thanh ghi chức năng đặc biệt SFR chiếm phần trên của Ram nội từ địa chỉ 80H đến FFH.
Cần lưu ý là không phải tất cả 128 địa chỉ từ 80H đến FFH đều được định nghĩa mà chỉ có 21 địa chỉ
được định nghĩa. Hình 1.2.1 mô tả các thanh ghi đặc biệt trong vùng nhớ dữ liệu 80H đến FFH.
Hình 1.2.1 Các thanh ghi đặc biệt
Thanh ghi chính
Thanh ghi tính toán chính của vi điều khiển 8051 ACC (Accumulator). Là thanh ghi đặc biệt của
8051 dùng để thực hiện các phép toán của CPU, thường kí hiệu là A.
Thanh ghi phụ
Thanh ghi tính toán phụ của vi điều khiển 8051 là B. Thanh ghi B ở địa chỉ F0H được dùng chung
với thanh chứa A trong các phép toán nhân, chia. Lệnh MUL AB nhân 2 số 8 bit không dấu chứa trong
A và B và chứa kết quả 16 bit vào cặp thanh ghi B, A (thanh chứa A cất byte thấp và thanh ghi B cất
byte cao).
Lệnh chia DIV AB chia A bởi B, thương số cất trong thanh chứa A và dư số cất trong thanh ghi B.
Thanh ghi B còn được xử lý như một thanh ghi nháp. Các bit được định địa chỉ của thanh ghi B có địa
chỉ từ F0H đến F7H.
Thanh ghi trạng thái chương trình (PSW)
Thanh ghi trạng thái chương trình PSW là thanh ghi mô tả toàn bộ trạng thái chương trình đang
hoạt động của hệ thống. Hình 1.2.2 và 1.2.2 sẽ mô tả thanh ghi này.
Hình 1.2.1 Thanh ghi trạng thái chương trình PSW
Hình 1.2.2 Chi tiết các bit trong thanh ghi PSW
Thanh ghi ngăn xếp (Stack Pointer)
Con trỏ stack SP (stack pointer) là 1 thanh ghi 8 bit ở địa chỉ 81H. SP chứa địa chỉ của dữ liệu hiện
đang ở đỉnh của stack. Các lệnh liên quan đến satck bao gồm lệnh cất dữ liệu vào stack và lệnh lấy dữ
liệu ra khỏi stack. Việc cất vào stack làm tăng SP trước khi ghi dữ liệu và việc lấy dữ liệu ra khỏi stack
sẽ giảm SP. Vùng stack của 8051 được giữ trong RAM nội và được giới hạn đến các địa chỉ truy xuất
được bởi kiểu định địa chỉ gián tiếp. Các lệnh PUSH và POP sẽ cất dữ liệu vào stack và lấy dữ liệu từ
stack, các lệnh gọi chương trình con (ACALL, LCALL) và lệnh trở về (RET, RETI) cũng cất và phục hồi
nội dung của bộ đếm chương trình PC (Program counter)
Con trỏ dữ liệu DPTR
Con trỏ dữ liệu DPTR (data pointer) được dùng để truy xuất bộ nhớ chương trình ngoài hoặc bộ
nhớ dữ liệu ngoài. DPTR là một thanh ghi 16 bit có địa chỉ là 82H (DPL, byte thấp) và 83H (DPH, byte
cao).
Thanh ghi các cổng P0-P3
Các port xuất/nhập của 8051 bao gồm Port 0 tại địa chỉ 80H, Port 1 tại địa chỉ 90H, Port 2 tại địa chỉ
A0H và Port 3 tại địa chỉ B0H. Tất cả các port đều được định địa chỉ từng bit nhằm cung cấp các khả
năng giao tiếp mạnh.
Thanh ghi bộ đệm truyền thông nối tiếp (Serial Data Buffer)
Bộ đệm truyền thông được chia thành hai bộ đệm, bộ đệm truyền dữ liệu và bộ đệm nhận dữ liệu.
Khi dữ liệu được chuyển vào thanh ghi SBUF, dữ liệu sẽ được chuyển vào bộ đệm truyền dữ liệu và sẽ
được lưu giữ ở đó cho đến khi quá trình truyền dữ liệu qua truyền thông nối tiếp kết thúc. Khi thực hiện
việc chuyển dữ liệu từ SBUF ra ngoài, dữ liệu sẽ được lấy từ bộ đệm nhận dữ liệu của truyền thông
nối tiếp.
Thanh ghi của bộ định thời/bộ đếm
8051 có 2 bộ đếm/định thời (counter/timer) 16 bit để định các khoảng thời gian hoặc để đếm các sự
kiện. Các cặp thanh ghi (TH0, TL0) và (TH1, TL1) là các thanh ghi của bộ đếm thời gian. Bộ định thời 0
có địa chỉ 8AH (TL0, byte thấp) và 8CH (TH0, byte cao). Bộ định thời 1 có địa chỉ 8BH (TL1, byte thấp) và 8DH
(TH1, byte cao).
Hoạt động của bộ định thời được thiết lập bởi thanh ghi chế độ định thời TMOD (Timer Mode Register) ở địa
chỉ 88H. Chỉ có TCON được định địa chỉ từng bit.
Các thanh ghi điều khiển
Các thanh ghi điều khiển đặc biệt như IP, IE, TMOD, TCON, SCON và PCON là các thanh ghi điều
khiển và ghi nhận trạng thái của hệ thống ngắt, bộ đếm/định thời, truyền thông nối tiếp. Chi tiết của các
thanh ghi này sẽ được mô tả sau.
1.3 Truy xuất địa chỉ
8051 có các kiểu truy xuất địa chỉ khác nhau:
o Thanh ghi (Register)
o Trực tiếp (Direct)
o Gián tiếp (Indirect)
o Tức thời (Immediate)
o Tương đối (Relative)
o Tuyệt đối (Absolute)
o Dài (Long)
o Chỉ số (Indexed)
Truy xuất địa chỉ thanh ghi
8051 cho phép truy xuất 8 thanh ghi “làm việc”, được đánh số từ R0 → R7. Các lệnh sử dụng kiểu
định địa chỉ thanh ghi được mã hóa bằng các dùng 3 bit thấp nhất của opcode( của lệnh) để chỉ ra 1
thanh ghi bên trong không gian địa chỉ logic này. Vậy : 1 mã chức năng + địa chỉ toán hạng → 1 lệnh
ngắn 1 byte.
Truy xuất địa chỉ kiểu trực tiếp
Kiểu định địa chỉ trực tiếp được sử dụng để truy xuất các biến nhớ hoặc các thanh ghi trên chip. Một
byte thêm vào tiếp theo opcode dùng để xác định địa chỉ. Trong 8051 có 128 byte bộ nhớ RAM. Bộ nhớ
RAM được gán địa chỉ từ 00H đến FFH và được phân chia như sau:
o Các ngăn nhớ từ 00H đến 1FH được gán cho các băng thanh ghi và ngăn xếp
o Các ngăn nhớ từ 20H đến 2FH được dành cho không gian định địa chỉ bít để lưu dữ liệu theo
từng bit
o Các ngăn nhớ từ 30H đến 7FH là không gian để lưu dữ liệu có kích thước 1 byte
Chế độ định địa chỉ trực tiếp có thể truy cập toàn bộ không gian của bộ nhớ RAM. Tuy nhiên, chế độ
này thường được dùng để truy cập các ngăn nhớ RAM từ 30H đến 7FH, vì thực tế đối với không gian
nhớ danh cho băng thanh ghi thì đã được truy cập bằng tên thanh ghi như R0- R7. ở chế độ định địa
chỉ trực tiếp , địa chỉ ngăn nhớ RAM chứa dữ liệu là toán hạng của lệnh.
Ví dụ:
MOV R0, 40 ; sao nội dung ngăn nhớ 40H của RAM vào R0
MOV R4, 7FH ; chuyển nội dung ngăn nhớ 7FH vào R4.
Một ứng dụng quan trọng của chế độ định địa chỉ trực tiếp là ngăn xếp. Trong họ
8051, chỉ có chế độ định địa chỉ trực tiếp là được phép cất và lấy dữ liệu từ ngăn xếp
Truy xuất địa chỉ kiểu gián tiếp
Ở chế độ này, thanh ghi được dùng để trỏ đến dữ liệu có trong bộ nhớ.
Nếu dữ liệu có trên chip CPU thì chỉ các thanh ghi R0 và R1 mới được sử dụng, và như vậy cũng có
nghĩa là không thể dùng các thanh ghi R2-R7 để trỏ đến địa chỉ của toán hạng ở chế độ định địa chỉ
này. Nếu R0 và R1 được dùng làm con trỏ, nghĩa là chúng lưu địa chỉ của ngăn nhớ RAM thì trước các
thanh ghi cần đặt dấu " @" như các ví dụ sau:
MOV A, @R0 ; chuyển ngăn nhớ RAM có địa chỉ ở R0 vào A
MOV @R1, B ; chuyển B vào ngăn nhớ RAM có địa chỉ ở R1
Chú ý: ở đây R0 cũng như R1 đều có dấu "@" đứng trước. Nếu không có dấu "@" đứng trước thì
đó là lệnh chuyển nội dung thanh ghi R0 và R1 chứ không phải dữ liệu ngăn nhớ có địa chỉ trong R0 và
R1. Một trong những ưu diểm của chế độ định địa chỉ gián tiếp là cho phép truy cập dữ liệu linh hoạt
hơn so với chế độ định địa chỉ trực tiếp. Tuy nhiên R0 và R1 là các thanh ghi 8 bit, nên chúng chỉ được
phép truy cập đến các ngăn nhớ RAM trong, từ địa chỉ 30H đến 7FH và các thanh ghi SFR. Trong thực
tế, có nhiều trường hợp cần truy cập dữ liệu được cất ở RAM ngoài hoặc không gian ROM trên chip.
Trong những trường hợp đó chúng ta cần sử dụng thanh ghi 16 bit DPTR.
Truy xuất địa chỉ kiểu tức thời
Khi toán hạng là một hằng số thay vì là một biến, hằng số này có thể đưa vào lệnh và đây là byte dữ
liệu tức thời.
Trong hợp ngữ, các toàn hạng tức thời được nhận biết nhờ vào ký tự ‘# ‘ đặt trước chúng. Toán
hạng này có thể là một hằng số học, một biến hoặc một biểu thức số học sử dụng các hằng số, các ký
hiệu và các toán tử. Trình dịch hợp ngữ tính giá trị và thay thế dữ liệu tức thời vào trong lệnh.
Ví dụ lệnh : MOV A, #12 ;Nạp giá trị 12(OCH) vào thanh chứa A
Tất cả các lệnh sử dụng kiểu định địa chỉ tức thời đều sử dụng hằng dữ liệu 8 bit làm dữ liệu tức
thời. Có một ngoại lệ khi ta khởi động con trỏ dữ liệu 16-bit DPTR, hằng địa chỉ 16 bit được cần đến.
Truy xuất địa chỉ kiểu tương đối
Kiểu định địa chỉ tương đối chỉ được sử dụng cho các lệnh nhảy. Một địa chỉ tương đối là một giá
trị 8 bit có dấu. Giá trị này được cộng với một bộ đếm chương trình để tạo ra địa chỉ của lệnh tiếp theo
cần thực thi. Định địa chỉ tương đối có điểm lợi là cung cấp cho ta mã không phụ thuộc vào vị trí,
nhưng lại có điểm bất lợi là các đích nhảy bị giới hạn trong tầm.
Truy xuất địa chỉ kiểu tuyệt đối
Kiểu định địa chỉ này được sử dụng với các lệnh ACAll và AJMP. Đây là các lệnh 2 byte cho phép rẽ
nhánh chương trình trong trang 2k hiện hành của bộ nhớ chương trình bằng cách cung cấp 11 bit thấp
của địa chỉ đích. Trong đó có 3 bit cao (A8-A10) và 8 bit thấp (A0-A7) thành lập byte thứ 2 của lệnh
Truy xuất địa chỉ kiểu dài
Kiểu định địa chỉ dài chỉ được dùng cho các lệnh LCALL và LJMP. Các lệnh 3 byte này chứa địa chỉ
đích 16 bit. Lợi ích của kiểu định địa chỉ này là sử dụng hết toàn bộ không gian nhớ chương trình 64K,
nhưng lại có điểm bất lợi là lệnh dài đến 3-byte và phụ thuộc vào vị trí.
Truy xuất địa chỉ kiểu chỉ số
Chế độ định địa chỉ chỉ số được sử dụng rộng rãi khi truy cập các phần tử dữ liệu của bảng trong
không gian ROM chương trình của 8051. Lệnh được dùng cho mục đích này là "MOVC A, @A+DPTR".
Thanh ghi 16 bit DPTR và thanh ghi A được dùng để tạo ra địa chỉ của phần tử dữ liệu được lưu trong
ROM trên chip. ở lệnh này, nội dung của A được cộng với nội dung thanh ghi 16- bit DPTR để tạo ra
địa chỉ 16 bit.
1.4 Các loại lệnh
Các lệnh số học
Các lệnh logic