❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖
❚❘×❮◆● ✣❸■ ❍➴❈ ◗❯❨ ◆❍❒◆
✣➄◆● ❚❍➚ ❚❍❯ ❚❍❷❖
❈❍➆❖ ❍➶❆ ❚×❒◆● ✣➃◆●
✣➬◆● ❚❍❮■ ❍➏ ❍❆■✱ ❇❆ ▼❆
❚❘❾◆ ❚❘➊◆ ❚❘×❮◆● ❙➮
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈
❇➻♥❤ ✣à♥❤ ✲ ✷✵✷✵
❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖
❚❘×❮◆● ✣❸■ ❍➴❈ ◗❯❨ ◆❍❒◆
✣➄◆● ❚❍➚ ❚❍❯ ❚❍❷❖
❈❍➆❖ ❍➶❆ ❚×❒◆● ✣➃◆●
✣➬◆● ❚❍❮■ ❍➏ ❍❆■✱ ❇❆ ▼❆
❚❘❾◆ ❚❘➊◆ ❚❘×❮◆● ❙➮
❈❤✉②➯♥ ♥❣➔♥❤✿ ✣↕✐ sè ✈➔ ❧➼ t❤✉②➳t số
số
ữớ ữợ
▲➊ ❚❍❆◆❍ ❍■➌❯
❇➻♥❤ ✣à♥❤ ✲ ✷✵✷✵
✐
▼ư❝ ❧ư❝
▲í✐ ♠ð ✤➛✉
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
✶
✹
✷ ❈❤➨♦ ❤â❛ t÷ì♥❣ ✤➥♥❣ ỗ tớ tr
ố ự t❤ü❝
✶✶
✷✳✶
❍➺ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✶✳✶
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❣✐❛♦ ❤♦→♥ ❝õ❛ ❤➺ ❤❛✐ ♠❛ tr➟♥
✤è✐ ①ù♥❣ t❤ü❝✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✶✳✷
✷✳✷
✶✶
✶✶
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❙❉❙ ❝õ❛ ♠ët ❤➺ ❤❛✐ ♠❛ tr➟♥
✤è✐ ①ù♥❣ t❤ü❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✸
❍➺ ❜❛ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✸
✷✳✷✳✶
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❣✐❛♦ ❤♦→♥ ❝õ❛ ❤➺ ❜❛ ♠❛ tr➟♥
✤è✐ ①ù♥❣ t❤ü❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✷✳✷
✷✸
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❙❉❙ ❝õ❛ ♠ët ❤➺ ❜❛ ♠❛ tr➟♥ ✤è✐
①ù♥❣ t❤ü❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
õ tữỡ ỗ tớ ❤➺ ❤❛✐ ✈➔ ❜❛ ♠❛ tr➟♥
❍❡r♠✐t
✸✼
✸✳✶
❍➺ ❤❛✐ ♠❛ tr➟♥ ❍❡r♠✐t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✼
✐✐
✸✳✶✳✶
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❣✐❛♦ ❤♦→♥ ❝õ❛ ❤➺ ❤❛✐ ♠❛ tr➟♥
❍❡r♠✐t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✶✳✷
✸✳✷
✸✼
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❙❉❙ ❝õ❛ ♠ët ❤➺ ❤❛✐ ♠❛ tr➟♥
❍❡r♠✐t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✵
❍➺ ❜❛ ♠❛ tr➟♥ ❍❡r♠✐t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✼
✸✳✷✳✶
✸✳✷✳✷
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❣✐❛♦ ❤♦→♥ ❝õ❛ ♠ët ❤➺ ❜❛ ♠❛
tr➟♥ ❍❡r♠✐t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✼
❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❙❉❙ ❝õ❛ ❤➺ ❜❛ ♠❛ tr➟♥ ❍❡r♠✐t
✹✾
❑➳t ❧✉➟♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻✵
✻✶
✶
▲í✐ ♠ð ✤➛✉
❚❛ ♥â✐ ♠ët ♠❛ tr➟♥ ✈✉ỉ♥❣ A ❝➜♣ n tr➯♥ tr÷í♥❣ F ❧➔ ❝❤➨♦ ❤â❛ t÷ì♥❣
✤÷ì♥❣ ✤÷đ❝ ♥➳✉ tỗ t tr ổ P n s❛♦ ❝❤♦
P −1 AP ❧➔ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦❀ ♠❛ tr➟♥ ✈✉ỉ♥❣ A ❝➜♣ n tr➯♥ tr÷í♥❣ F
❧➔ ❝❤➨♦ ❤â❛ tữỡ ữủ tỗ t tr ổ P ❝➜♣ n ❦❤↔
♥❣❤à❝❤ s❛♦ ❝❤♦ P H AP ❧➔ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦✳ ❚❛ ❜✐➳t r➡♥❣ ♠å✐ ♠❛ tr➟♥
❍❡r♠✐t A Cnìn õ tữỡ ữủ tỗ t ởt
tr P Cnìn , P H P = In s❛♦ ❝❤♦ P H AP Rnìn
tr ữớ ✤➦t r❛ ❧➔✱ ✈ỵ✐ ♠ët ❤➺ ❝→❝ ♠❛
tr➟♥ ❍❡r♠✐t A1 , A2 , . . . , Am ✱ ❝â tỗ t ổ tr
P Cnìn õ ỗ tớ tt tr Ai i = 1, m
õ tỗ t↕✐ ❤❛② ❦❤æ♥❣ ♠ët ♠❛ tr➟♥ ❦❤æ♥❣ s✉② ❜✐➳♥ P s❛♦ ❝❤♦
P H Ai P, ∀i = 1, m ❧➔ ❝→❝ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦✳ ✣✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔ ✤õ
tỗ t tr P õ ỗ tớ ✤÷đ❝ ❤➺ tr➯♥ ❧➔ ❣➻❄
❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔②✱ ❝❤ó♥❣ tỉ✐ ❝❤➾ t➟♣ tr✉♥❣ ❣✐↔✐ q✉②➳t ✈➜♥ ✤➲ ♥➯✉ tr➯♥
✤è✐ ✈ỵ✐ ❤➺ ❤❛✐ ❤♦➦❝ ❜❛ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝✱ ♠❛ tr rt
õ tữỡ ỗ tớ tr
tr trữớ số ỗ ữỡ
ữỡ ởt sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à✳ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët
▲✉➟♥ ✈➠♥ ✧
sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❧✐➯♥ q✉❛♥ ✤➳♥ ❝❤➨♦ ❤â❛ ♠❛ tr➟♥ tr➯♥ ♠ët tr÷í♥❣
✷
sè ✤÷đ❝ sû ❞ư♥❣ tr♦♥❣ ❧✉➟♥ ✈➠♥✳
❈❤÷ì♥❣ ✷✳ ❈❤➨♦ ❤â❛ tữỡ ỗ tớ
tr ✤è✐ ①ù♥❣ t❤ü❝✳ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ✤✐➲✉
ừ õ tữỡ ỗ tớ ❤➺ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝✱
❤➺ ❜❛ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝✱ ✈➔ ♠è✐ ❧✐➯♥ ❤➺ ❣✐ú❛ ❝❤➨♦ ❤â❛ tữỡ
ỗ tớ ợ õ tữỡ ữỡ ỗ tớ
ữỡ õ tữỡ ỗ tớ ✈➔ ❜❛
♠❛ tr➟♥ ❍❡r♠✐t✳ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ✈➜♥ ✤➲ t÷ì♥❣ tü ♥❤÷ tr♦♥❣
❈❤÷ì♥❣ ✷ ❝❤♦ ❝→❝ ❤å ♠❛ tr➟♥ rt
ữủ t ớ sỹ ữợ ❣✐ó♣ ✤ï t➟♥ t➻♥❤
❝õ❛ ❚❙✳ ▲➯ ❚❤❛♥❤ ❍✐➳✉✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ◗✉② ◆❤ì♥✳ ◆❤➙♥ ❞à♣ ♥➔②✱ tỉ✐
①✐♥ ❜➔② tä sü ❦➼♥❤ trå♥❣ ✈➔ ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ ✤➳♥ ❚❤➛② ✤➣ t➟♥ t➻♥❤
❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳ ❈❤ó♥❣
tỉ✐ ❝ơ♥❣ ①✐♥ ❣û✐ ớ ỡ qỵ rữớ ❤å❝ ◗✉②
◆❤ì♥✱ P❤á♥❣ ✣➔♦ t↕♦ s❛✉ ✤↕✐ ❤å❝✱ ❑❤♦❛ ❚♦→♥ ũ qỵ t ổ
ợ ồ sè ✈➔ ❧➼ t❤✉②➳t sè ❦❤â❛ ✷✶ ✤➣ ❞➔② ❝æ♥❣ ❣✐↔♥❣
❞↕② tr♦♥❣ s✉èt ❦❤â❛ ❤å❝✱ t↕♦ ✤✐➲✉ ❦✐➺♥ t❤✉➟♥ ❧ñ✐ ❝❤♦ ❝❤ó♥❣ tỉ✐ tr♦♥❣ q✉→
tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐✳ ◆❤➙♥ ✤➙②✱ ❝❤ó♥❣ tỉ✐ ❝ơ♥❣ ①✐♥ ❝❤➙♥
t❤➔♥❤ ❝↔♠ ì♥ sü ❤é trñ ✈➲ ♠➦t t✐♥❤ t❤➛♥ ❝õ❛ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧ ✤➣ ❧✉ỉ♥
t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥ ❣✐ó♣ ✤ï ✤➸ ❝❤ó♥❣ tỉ✐ ❤♦➔♥ t❤➔♥❤ tèt ❦❤â❛ ❤å❝ ✈➔ ❧✉➟♥
✈➠♥
ũ ữủ tỹ ợ sỹ ộ ❧ü❝ ❝è ❣➢♥❣ ❤➳t sù❝ ❝õ❛
❜↔♥ t❤➙♥✱ ♥❤÷♥❣ ❞♦ ✤✐➲✉ ❦✐➺♥ t❤í✐ ❣✐❛♥ ❝â ❤↕♥✱ tr➻♥❤ ✤ë ❦✐➳♥ t❤ù❝ ✈➔
❦✐♥❤ ♥❣❤✐➺♠ ♥❣❤✐➯♥ ❝ù✉ ❝á♥ ❤↕♥ ❝❤➳ ♥➯♥ ❧✉➟♥ ✈➠♥ ❦❤â tr→♥❤ ❦❤ä✐ ♥❤ú♥❣
t❤✐➳✉ sât✳ ❈❤ó♥❣ tỉ✐ r➜t ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ ỳ õ ỵ ừ qỵ t ổ
✸
❣✐→♦ ✤➸ ❧✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳
❇➻♥❤ ✣à♥❤✱ ♥❣➔②
t❤→♥❣
♥➠♠ ✷✵✷✵
❍å❝ ✈✐➯♥ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐
✣➦♥❣ ❚❤à ❚❤✉ ❚❤↔♦
✹
❈❤÷ì♥❣ ✶
▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
❚r♦♥❣ s✉èt ❧✉➟♥ ✈➠♥ ♥➔②✱ F ❧➔ tr÷í♥❣ sè t❤ü❝ R ❤❛② tr÷í♥❣ sè ♣❤ù❝ C✳
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ ▼❛ tr➟♥ t❤ü❝ ✈✉ỉ♥❣ A ✤÷đ❝ ❣å✐ ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣
t❤ü❝ ♥➳✉ AT = A✱ tr♦♥❣ ✤â AT ❧➔ ♠❛ tr➟♥ ❝❤✉②➸♥ ✈à ❝õ❛ ♠❛ tr A
tr A Cnìn ữủ ồ ố ①ù♥❣ ♣❤ù❝ ♥➳✉ AT = A✳
▼❛ tr➟♥ ♣❤ù❝ ✈✉æ♥❣ A ✤÷đ❝ ❣å✐ ❧➔ ♠❛ tr➟♥ ❍❡r♠✐t ♥➳✉ A = AH ✱ tr♦♥❣
✤â AH ❧➔ ♠❛ tr➟♥ ❝❤✉②➸♥ ✈à ❧✐➯♥ ❤ñ♣ ❝õ❛ ♠❛ tr➟♥ A✳
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳ ▼❛ tr➟♥ A ∈ Fnìn ữủ ồ õ tữỡ ữỡ
ữủ tỗ t↕✐ ♠❛ tr➟♥ P ∈ Fn×n ❦❤↔ ♥❣❤à❝❤ s❛♦ ❝❤♦ P −1 AP ❧➔ ♠❛
tr➟♥ ✤÷í♥❣ ❝❤➨♦✳ ❑❤✐ ✤â t❛ ♥â✐ A ❧➔ DS ✭❞✐❛❣♦♥❛❧✐③❛❜❧❡ ✈✐❛ s✐♠✐❧❛r✐t②✮
tr➯♥ F✳
▼❛ tr➟♥ A Fnìn ữủ ồ õ tữỡ ữủ tỗ t
tr P Fnìn s ❝❤♦ P H AP ❧➔ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦✳
❑❤✐ ✤â t❛ ♥â✐ A ❧➔ DC ✭❞✐❛❣♦♥❛❧✐③❛❜❧❡ ✈✐❛ ❝♦♥❣r✉❡♥❝❡✮ tr➯♥ F✳
✣à♥❤ ♥❣❤➽❛ ✶✳✸✳ ❛✮ ▼ët ❤å ♠❛ tr➟♥ A1, . . . , Am Fnìn ữủ ồ
SDC tr F ♥➳✉ ❝â ♠ët ♠❛ tr➟♥ ❦❤↔ ♥❣❤à❝❤ P ∈ Fn×n s❛♦ ❝❤♦ P H Ai P
❧➔ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦ ✈ỵ✐ ♠å✐ i = 1, m✳
✺
❜✮ ▼ët ❤å ♠❛ tr➟♥ A1 , . . . , Am Fnìn ữủ ồ SDS tr F ♥➳✉ ❝â
♠ët ♠❛ tr➟♥ ❦❤↔ ♥❣❤à❝❤ P ∈ Fn×n s❛♦ P 1 Ai P tr ữớ
ợ ♠å✐ i = 1, m✳
◆❤➟♥ ①➨t ✶✳✶✳ ▼ët ❤å ♠❛ tr➟♥ A1, . . . , An ❝â t❤➸✿
✰✮ ▼é✐ Ai , i = 1, m ❧➔ ♠ët ❝❤➨♦ ❤â❛ t÷ì♥❣ ✤➥♥❣ ✤÷đ❝ tr➯♥ F ♥❤÷♥❣
❦❤ỉ♥❣ ❧➔ ❝❤➨♦ ❤â❛ t÷ì♥❣ ỗ tớ ữủ tr F
ữỡ tỹ ồ õ tữỡ ữỡ ỗ tớ
ử t
0 1
1 1
, A2 =
∈ R2×2 ⊆ C2×2 .
A1 =
1 1
1 0
❑❤✐ ✤â {A1 , A2 } ❧➔ ổ õ tữỡ ỗ tớ ữủ tr R
tr ❦❤✐ ♠é✐ Ai , i = 1, 2✱ ❧➔ ❝❤➨♦ ❤â❛ t÷ì♥❣ ✤➥♥❣ ✤÷đ❝ tr➯♥ R✳
❚❤➟t ✈➟②✱ t❛ ❝â A1 T = A1 , A2 T = A2 ♥➯♥ tø♥❣ ♠❛ tr➟♥ ❧➔ ❝❤➨♦ ❤â❛
trü❝ ❣✐❛♦ ✤÷đ❝ ❧➛♥ ❧÷đt ❜ð✐
√
√
1−
−1+
5
5
2
2
√
√
√
√
√
√
10−2√5
10−2√5
10−2 5
10−2 5
P1 =
, P2 =
√
√ .
√ 2 √ √1− 5√
√ 2 √ √−1+ √5
10−2 5
10−2 5
10−2 5
10−2 5
❑❤✐ ✤â
√
P1 T A 1 P1 =
5+1
2
0
0
√
− 5+1
2
, P2 T A2 P2 =
√
− 5+1
2
0
0
√
5+1
2
,
❧➔ ❤❛✐ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦✳
❚✉② ♥❤✐➯♥ A1 ✈➔ A2 ổ õ ỗ tớ ữủ t t õ
det A1 = −1 = det A2 ♥➯♥ A1 ❦❤↔ ♥❣❤à❝❤✱
1 −1
−1 1
=
A1 −1 = −
−1 0
1 0
✻
✈➔
−1 1 1 1
0 −1
=
.
M = A1 −1 A2 =
1 0 1 0
1 1
❚❛ ❝â
PM (λ) = 0 ⇔ PA1 −1 A2 (λ) = 0
⇔
−λ
−1
1
1−λ
=0
⇔ λ (λ − 1) + 1 = 0
⇔ λ2 − λ + 1 = 0
√
1±i 3
.
⇔ λ± =
2
❉♦ M ❝â ❤❛✐ ❣✐→ trà r✐➯♥❣ ♣❤➙♥ ❜✐➺t
x
❇➙② ❣✐í✱ ❣✐↔ sû ❝â ♠❛ tr➟♥ P =
z
♥➯♥
M ❝❤➨♦ ❤â❛ ✤÷đ❝✳
y
❦❤ỉ♥❣ s✉② ❜✐➳♥ s❛♦ ❝❤♦
t
α1 0
= diag (α1 , α2 ) := D1 ,
P T A1 P =
0 α2
β1 0
= diag (β1 , β2 ) := D2 .
P T A2 P =
0 β2
❉♦ det A1 = −1
= detA2 ♥➯♥ α1 α2 = 0 = β1 β2 ✳ ❚ù❝ ❧➔ D1 , D2 ❦❤↔
β1
α1 0
♥❣❤à❝❤✳ ❑❤✐ ✤â
= D1 −1 D2 = P −1 A1 −1 A2 P = P −1 M P ✳ ❙✉② r❛
β2
0 α2
β2
β1
✈➔
❧➔ ❝→❝ ❣✐→ trà r✐➯♥❣ ❝õ❛ M ✱ tù❝ ❧➔
α1
α2
√
√
βi
1+i 3
1−i 3
∈ {λ± } = λ+
, λ− =
.
αi
2
2
✼
❙✉② r❛ β1 = λ+ . α1 , β2 = λ− . α2 ∈ C✳ ❉♦ λ± ∈ C \ R ♥➯♥ P ∈ C2×2 \ R2×2 ✳
❈ư t❤➸✱ t❛
❝ât❤➸ ①→❝ ✤à♥❤
♠❛ tr➟♥ P ❧➔♠ ❝❤➨♦ ❤â❛ M ✤➲✉ ❝â
t➜t ❝↔ ❝→❝
xλ− yλ+
| x, y ∈ C ✳
❞↕♥❣ P ∈
−x −y
❘ã r➔♥❣ ♥➳✉ x ∈ R t❤➻ xλ− ∈ C✱ ✈➔ x ∈ C t❤➻ P ∈ C2×2 \ R2×2 . ❉♦ ✤â
P ∈ C2×2 \ R2×2 ✳ ✣✐➲✉ ♥➔② ❝❤ù♥❣ tä ❦❤ỉ♥❣ ❝â P ∈ R2×2 ❦❤↔ ♥❣❤à❝❤ ♠➔
P T A1 P, P T A2 P ❧➔ ❝→❝ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦✱ ♠➦❝ ❞ò ♠é✐ ♠❛ tr➟♥ A1 , A2
✤➲✉ ❝❤➨♦ ❤â❛ trü❝ ❣✐❛♦ tr♦♥❣ R2×2 ✳
▼➺♥❤ ✤➲ ✶✳✶✳ ◆➳✉ A = diag (α1In , . . . , αk In ) ✈ỵ✐ αi = αj ∈ F ∀i =
1
k
j; n1 + . . . + nk = n ✈➔ AB = BA t❤➻ B = diag (B1 , . . . , Bk ) ợ Bi
Fni ìni , i = 1, k ✳ ❍ì♥ ♥ú❛✱ ♥➳✉ B ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ ✭t÷ì♥❣ ù♥❣ ♠❛
tr➟♥ ❍❡r♠✐t✮ t❤➻ ❝→❝ Bi ❝ơ♥❣ ✈➟②✳
▼➺♥❤ ✤➲ ✶✳✷✳ ▼å✐ ♠❛ tr➟♥ ❍❡r♠✐t A ✤➲✉ ❝❤➨♦ õ trỹ ữủ
tỗ t ởt tr ✉♥✐t❛ U ∈ Cn×n , U H U = In s
U H AU Rnìn tr ữớ ❝❤➨♦✳ ❍ì♥ ♥ú❛✱ ♥➳✉ A ∈ Rn×n t❤➻ U ❝â
t❤➸ ❝❤å♥ ❧➔ ♠❛ tr➟♥ trü❝ ❣✐❛♦ U ∈ Rn×n , U T U = In ✳
❈❤♦ A1 , . . . , Am ∈ Fn×n ✱ ❦➼ ❤✐➺✉
m
L(λ) =
λi Ai ,
λ = (λ1 , . . . , λm ) ∈ Rm ,
i=1
✈➔ ✤÷đ❝ ❣å✐ ❧➔ ❝❤ị♠ ♠❛ tr➟♥ s✐♥❤ ❜ð✐ A1 , . . . , Am ✳
▼➺♥❤ ✤➲ ✶✳✸✳ ❈❤♦ A1, . . . , Am ∈ Fn×n✳ tỗ t Rm s
det L() = 0✱ ❣✐↔ sû λ1 = 0 t❤➻ A1 , . . . , Am ❧➔ ❙❉❈ tr➯♥ F ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
L(λ), A2 , . . . , Am ❧➔ ❙❉❈ tr➯♥ F✳
❉♦ ♠➺♥❤ ✤➲ tr➯♥✱ tr♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ❝❤ó♥❣ tỉ✐ ❝❤➾ ①➨t ❤❛✐ tr÷í♥❣ ❤đ♣✿
✭✐✮ ❍å A1 , . . . , Am ❝â ♠ët ♠❛ tr➟♥ ❦❤↔ ♥❣❤à❝❤❀
✽
✭✐✐✮ ❑❤æ♥❣ ❝â ♠❛ tr➟♥ ♥➔♦ ❦❤↔ ♥❣❤à❝❤✳
✣à♥❤ ♥❣❤➽❛ ✶✳✹✳ ▼ët ♠✐➲♥ ♥❣✉②➯♥ ❧➔ ♠ët ✈➔♥❤ ❣✐❛♦ ❤♦→♥ ❝â ✤ì♥
ổ õ ữợ ừ
ử Z, Q, R, C ❧➔ ❝→❝ ♠✐➲♥ ♥❣✉②➯♥✳
n×n
n×n
❜✮ ❱➔♥❤ ❝→❝
tr➟♥ ✈✉ỉ♥❣
♠❛
R , C ❦❤æ♥❣
❧➔ ♠ët
♠✐➲♥♥❣✉②➯♥✳
1 0 0 1
0 1
0 0
0 1 1 0
=
=
=
✳
❈❤➥♥❣ ❤↕♥✱
0 0 0 0
0 0
0 0
0 0 0 0
▼➺♥❤ ✤➲ ✶✳✹✳ ◆➳✉ F ❧➔ ♠ët ♠✐➲♥ ♥❣✉②➯♥ t❤➻ F[x] = F [x1, . . . , xn] ❧➔
♠ët ♠✐➲♥ ♥❣✉②➯♥✳
❈❤ù♥❣ ♠✐♥❤✳ ●✐↔ sû F ❧➔ ♠ët tr÷í♥❣✳ ❳➨t F [x1 , . . . , xn ] ✈ỵ✐ ♠ët t❤ù tü
✤ì♥ t❤ù❝ ♥➔♦ ✤â✳ ❑❤✐ ✤â✱ ✈ỵ✐ ♠å✐ f, g ∈ F [x1 , . . . , xn ]✱ t❛ ✈✐➳t f, g t❤❡♦
t❤ù tü ✤ì♥ t❤ù❝ tr➯♥ ✤➙② ♥❤÷ s❛✉✿
f (x) = fα xα + . . . ,
g(x) = gβ xβ + . . . ,
tr♦♥❣ ✤â fα , gβ ∈ F \ {0} ❧➔ ❤➺ sè ❝❛♦ ♥❤➜t ❝õ❛ f (x) ✈➔ g(x) ù♥❣ ✈ỵ✐
t❤ù tü ✤ì♥ t❤ù❝ tr➯♥✳ ❑❤✐ ✤â✱ ♥➳✉ f (x)g(x) = 0 t❤➻ ❤➺ sè ❝❛♦ ♥❤➜t ❝õ❛
h(x) = f (x)g(x) ∈ F [x1 , . . . , xn ] ❧➔ fα gβ = 0✳ ❉♦ F ❧➔ ♠ët ♠✐➲♥ ♥❣✉②➯♥
♥➯♥ fα = 0 ❤♦➦❝ gβ = 0✳ ✣✐➲✉ ♥➔② ♠➙✉ t❤✉➝♥ ✈ỵ✐ fα , gβ ∈ F \ {0}✳ ❱➟②
F [x1 , . . . , xn ] ❧➔ ♠ët ♠✐➲♥ ♥❣✉②➯♥
✣à♥❤ ♥❣❤➽❛ ✶✳✺✳ ▼❛ tr➟♥ U ∈ Cn×n ✤÷đ❝ ❣å✐ ❧➔ ✉♥✐t❛ ♥➳✉ U H U = In✳
◆➳✉ U Rnìn t U ữủ ồ trỹ ♥➳✉ ♥â ❧➔ ✉♥✐t❛✱ ♥❣❤➽❛ ❧➔
U T U = In ✳
✣à♥❤ ♥❣❤➽❛ ✶✳✻✳ i) ▼❛ tr➟♥ ❍❡r♠✐t A ∈ Hn ✤÷đ❝ ❣å✐ ❧➔ ♥û❛ ①→❝ ✤à♥❤
❞÷ì♥❣ ♥➳✉ xH Ax
0, ∀x ∈ Cn×1 ✳ ❚❛ ✈✐➳t A
0✳
ii) tr ố ự A Rnìn ữủ ồ ỷ ữỡ
xT Ax
0, x Rnì1 ✳ ❚❛ ✈✐➳t A
0✳
iii) ▼ët ♠❛ tr➟♥ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣ ✤÷đ❝ ❣å✐ ❧➔ ①→❝ ✤à♥❤ ❞÷ì♥❣ ♥➳✉
♥â ❦❤↔ ♥❣❤à❝❤✳ ✣➸ ❝❤➾ A ❧➔ ①→❝ ✤à♥❤ ❞÷ì♥❣ t❛ ✈✐➳t A
0✳
▼➺♥❤ ✤➲ ✶✳✺✳ ❈❤♦ A ❧➔ ♠ët ♠❛ tr➟♥ ❍❡r♠✐t ❤❛② ✤è✐ ①ù♥❣ t❤ü❝✳ ❈→❝
♠➺♥❤ ✤➲ s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣✿
i) A
0❀
ii) ▼å✐ ❣✐→ trà r✐➯♥❣ ❝õ❛ A ✤➲✉ ❧➔ sè t❤ü❝ ❦❤æ♥❣ ➙♠✳
▼➺♥❤ ✤➲ ✶✳✻✳ ❈❤♦ A ❧➔ ♠ët ♠❛ tr➟♥ ❍❡r♠✐t ❤❛② ✤è✐ ①ù♥❣ t❤ü❝✳ ❈→❝
♠➺♥❤ ✤➲ s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣✿
i) A
0❀
ii) ▼å✐ ❣✐→ trà r✐➯♥❣ ❝õ❛ A ✤➲✉ ❧➔ sè t❤ü❝ ❞÷ì♥❣✳
▼➺♥❤ ✤➲ ✶✳✼✳ ✭P❤➙♥ t➼❝❤ ❝ü❝ ❤❛② ♣❤➙♥ t➼❝❤ P♦❧❛r✮ ❈❤♦ A ❧➔ ♠ët ♠❛
tr➟♥ ✈✉æ♥❣✳ ❑❤✐ ✤â tỗ t ởt tr t U ởt tr ỷ
ữỡ P ũ ợ A s ❝❤♦ A = U P ✳
◆➳✉ A t❤ü❝ t❤➻ U ✈➔ P t❤ü❝✳
◆➳✉ A ❦❤↔ ♥❣❤à❝❤ t❤➻ P ❧➔ ①→❝ ữỡ (U, P )
t
ú ỵ r➡♥❣ ♥➳✉ →♣ ❞ö♥❣ ♣❤➙♥ t➼❝❤ P♦❧❛r ❝❤♦ AT t❤➻ t❛ ❝â
AT = V Q, V H V = I, Q
0.
❑❤✐ ✤â✱ A = QT V T := P U ✳
▼➺♥❤ ✤➲ ✶✳✽✳ ❈❤♦ A ❧➔ ♠ët ♠❛ tr➟♥ ♥û❛ ữỡ n
õ ổ tỗ t ởt ♠❛ tr➟♥ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣ B ❝ị♥❣ ❝➜♣ n s❛♦ ❝❤♦
B 2 = A✳
✶✵
❈❤ù♥❣ ♠✐♥❤✳ ●✐↔ sû A ❝â ♣❤➙♥ t➼❝❤ A = U H ΛU ♥❤÷ tr♦♥❣ ▼➺♥❤ ✤➲
✶✳✷✱ U H U = In , Λ = diag (λ1 , . . . , λn ) , λi ∈ R ∀i = 1, n✳ ❉♦ A
λi
0 ♥➯♥
0, ∀i = 1, n t❤❡♦ ▼➺♥❤ ✤➲ ✶✳✺✳ ✣➦t
√
√
B = U H Λ U, Λ := diag
❑❤✐ ✤â B
√
0 ✈➔ B 2 = U H Λ U
λ1 , . . . ,
λn
0.
√
U H Λ U = U H ΛU = A✳
▼➺♥❤ ✤➲ ✶✳✾✳ ▼❛ tr➟♥ ❍❡r♠✐t A ❧➔ ♠❛ tr➟♥ ①→❝ ✤à♥❤ ❞÷ì♥❣ ❦❤✐ ✈➔ ❝❤➾
❦❤✐ ♠å✐ ✤à♥❤ t❤ù❝ ❝♦♥ ❝❤➼♥❤ ❞➝♥ ✤➛✉ ❝õ❛ ♥â ✤➲✉ ❞÷ì♥❣✳
▼❛ tr➟♥ ❝♦♥ ❝❤➼♥❤ ❞➝♥ ✤➛✉ ❝➜♣ k ❝õ❛ ♠❛ tr➟♥ A ❝➜♣ n ❧➔ ♠❛ tr➟♥ ❧➜②
tr➯♥ k ❞á♥❣ ✤➛✉ ✈➔ k ❝ët ✤➛✉ ❝õ❛ A✳
1 2 3
, t❛ ❝â✿
❱ỵ✐ A =
4
5
6
7 8 9
❱➼ ❞ư ✶✳✹✳
▼❛ tr➟♥ ❝♦♥ ❝❤➼♥❤ ❞➝♥ ✤➛✉ ❝➜♣ ✶ ❧➔ 1 .
1 2
.
▼❛ tr➟♥ ❝♦♥ ❝❤➼♥❤ ❞➝♥ ✤➛✉ ❝➜♣ ✷ ❧➔
4 5
ữỡ
õ tữỡ ỗ tớ
❜❛ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝
❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ♠ët sè ✤✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔✴❤♦➦❝
✤õ ✤➸ ♠ët ❤å ❤❛✐ ❤♦➦❝ ❜❛ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝ ❧➔ õ tữỡ
ỗ tớ ữủ ở ữỡ ❝❤õ ②➳✉ ✤÷đ❝ t❤❛♠ ❦❤↔♦ tø ❬✷❪ ✈➔
❬✸❪✳
✷✳✶ ❍➺ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝
✷✳✶✳✶ ❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❣✐❛♦ ❤♦→♥ ❝õ❛ ❤➺ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝✳
▼➺♥❤ ✤➲ ✷✳✶✳ ❈❤♦ A✱ B ∈ Rn×n ❧➔ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣✳
(i) ◆➳✉ A = In t❤➻ ❤➺ {In , B} ổ õ ỗ tớ ữủ
(ii) ợ A tr ố ự tũ ỵ {A, B} õ tữỡ
ỗ tớ (SDC) tỗ t tr P Rnìn
s P T AP ✈➔ P T BP ❣✐❛♦ ❤♦→♥ ♥❤❛✉✳
❈❤ù♥❣ ♠✐♥❤✳ (i) ❉♦ B ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ ♥➯♥ B õ trỹ
ữủ ự tỗ t tr➟♥ trü❝ ❣✐❛♦ P tù❝ ❧➔ P ∈ Rn×n , P T P = In
s❛♦ ❝❤♦ P T BP = D = diag(d1 , . . . , dn ).
✶✷
❍❛②
P T IP = I,
P T BP = D.
❱➟② {In , B} õ tữỡ ỗ tớ ữủ ❜ð✐ ♠❛ tr➟♥ P ✳
˜ = P T BP ✳ ❚❤❡♦ ❣✐↔ t❤✐➳t✱ A˜B
˜=B
˜ A˜✳
(ii) (⇐) ✣➦t A˜ = P T AP ✱ B
❱➻ A˜ ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ tỗ t tr trỹ U s
= D ˜ = diag(α1 , . . . , αn ).
U T AU
A
❑❤æ♥❣ ♠➜t t➼♥❤ tê♥❣ q✉→t✱ ❣✐↔ sû DA˜ = diag(α1 In1 , . . . , αk Ink ) ✈ỵ✐ αi =
αj ∈ R, ∀i = j ✈➔ n1 + . . . + nk = n✳
˜˜ = U T BU
˜=B
˜ A˜ ♥➯♥ A˜˜ = U T AU
˜ ✈➔ B
˜ ❣✐❛♦ ❤♦→♥✳ ❚❤➟t ✈➟②✱
❉♦ A˜B
˜˜ = U T AU
˜
A˜˜B
˜
U T BU
˜
= U T A˜BU
˜ AU
˜
= UTB
˜
= U T BU
˜
U T AU
˜˜ A.
˜˜
=B
˜˜ = diag(B , . . . , B ) t❤❡♦ ▼➺♥❤ ✤➲ ✶✳✶✱ tr♦♥❣ ✤â B = B T ∈
❙✉② r❛ B
1
k
i
i
Rni ×ni , ∀i = 1, k ✳
❱ỵ✐ ♠é✐ i = 1, k ✱ t❤❡♦ (i)✱ ❤➺ (Ini , Bi ) ❧➔ ❝❤➨♦ ❤â❛ tữỡ ỗ
tớ ữủ ởt tr trỹ Qi ∈ Rni ×ni ✿ Qi T Qi = Ini ✈➔ Bi =
Qi Λi Qi T tr♦♥❣ ✤â Λi ❧➔ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦✳ ✣➦t Q = diag (Q1 , . . . , Qk )✳
✶✸
❑❤✐ ✤â QT Q = diag(Q1 T Q1 , . . . , Qk T Qk ) = In ✳ ❙✉② r❛
QT Q = In ,
˜˜ = diag (α I , . . . , α I ) ,
QT AQ
1 n1
k nk
˜˜ = diag (Λ , . . . , Λ ) .
QT BQ
1
k
❙✉② r❛
˜˜ = QT U T AU
˜ Q = QT U T P T A (P U Q) = V T AV,
QT AQ
˜˜ = QT U T BU
˜ Q = QT U T P T B (P U Q) = V T BV
QT BQ
❧➔ ❝→❝ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦✳ ❱➟② ❤❛✐ ♠❛ tr➟♥ A✱ B ❧➔ ❝❤➨♦ õ tữỡ
ỗ tớ ữủ tr V = P U Q✳
(⇒) ●✐↔ sû A✱ B ❝❤➨♦ ❤â❛ t÷ì♥❣ ỗ tớ ữủ õ tỗ t
tr ♥❣❤à❝❤ P s❛♦ ❝❤♦ P T AP = DA ✈➔ P T BP = DB ❧➔ ❤❛✐ ♠❛
tr➟♥ ✤÷í♥❣ ❝❤➨♦✳ ❉♦ DA DB = DB DA ♥➯♥ DA ✈➔ DB ❧➔ ❣✐❛♦ ❤♦→♥ ♥❤❛✉✳
❍❛② P T AP ✈➔ P T BP ❧➔ ❣✐❛♦ ❤♦→♥ ♥❤❛✉✳
✷✳✶✳✷ ❚➼♥❤ ❙❉❈ ✈➔ t➼♥❤ ❙❉❙ ❝õ❛ ♠ët ❤➺ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝
▼➺♥❤ ✤➲ ✷✳✷✳ ❈❤♦ 0
= A, B ∈ Rn×n ❧➔ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ ❝â
dim (ker A ∩ ker B) = k ✳ ❑❤✐ ✤â k < n✳ ❍ì♥ ♥ú❛✱
(1) ❱ỵ✐ k = 0✱ ❝â 2 tr÷í♥❣ ❤đ♣✿
(i) ♥➳✉ det L (λ) = 0, ∀λ ∈ R2 t❤➻ {A, B} ❦❤æ♥❣
(ii) tỗ t R2 s det L (λ) = 0✱ ❦❤æ♥❣ ♠➜t t➼♥❤ tê♥❣
q✉→t✱ ❣✐↔ sû det A = 0✱ t❤➻ {A, B} ❧➔ ❙❉❈ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ A−1 B ❧➔ ❙❉❙✳
(2) ❱ỵ✐ k
1✱ õ tỗ t tr P s ❝❤♦
0k 0
0 0
, P T BP = k
,
P T AP =
˜
0 A˜
0 B
✶✹
˜ B
˜ ∈ R(n−k)×(n−k) ✤è✐ ①ù♥❣ ✈➔ dim ker A˜ ∩ ker B
˜ = 0✳
✈ỵ✐ A,
˜ B
˜ ❧➔ ❙❉❈✳
❍ì♥ ♥ú❛✱ A, B ❧➔ ❙❉❈ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ A,
❈❤ù♥❣ ♠✐♥❤✳ ●✐↔ sû k = n✳ ❑❤✐ ✤â dim (ker A ∩ ker B) = n✳ ❉♦
dim (ker A ∩ ker B)
dim (ker A) = n − rankA
♥➯♥ rankA = 0✳ ❉♦ ✤â A = 0✱ ♠➙✉ t❤✉➝♥✳ ❱➟② k < n✳
(1) ●✐↔ sû k = 0✱
(i) ●✐↔ sû det L (λ) = 0, ∀λ ∈ R2 ✈➔ A, B ❧➔ õ tỗ t
tr P s ❝❤♦ P T AP = DA ✈➔ P T BP = DB tr
ữớ tr Rnìn ợ
DA = diag (α1 , . . . , αn ) ,
DB = diag (β1 , . . . , βn ) ,
tr♦♥❣ ✤â αi , βi ∈ R, ∀i = 1, n✳ ❙✉② r❛
det (L (λ)) = det (λ1 A + λ2 B)
= det (P −1 )T (λ1 DA + λ2 DB ) P −1
= det2 P −1 . det (λ1 DA + λ2 DB )
= det2 P −1 . (λ1 α1 + λ2 β1 ) (λ1 α2 + λ2 β2 ) . . . (λ1 αn + λ2 βn )
n
2
= det P
−1
.
(λ1 αi + λ2 βi ) .
i=1
❉♦ det L (λ) = 0, ∀λ ∈ R2 ♥➯♥ ✤❛ t❤ù❝ t❤ü❝
n
f (x1 , x2 ) =
(αi x1 + βi x2 )
i=1
n
qi (x1 , x2 ), qi (x1 , x2 ) = αi x1 + βi x2 ∈ R [x1 , x2 ]
=
i=1
✶✺
❧➔ ✤❛ t❤ù❝ ❦❤æ♥❣✳ ❉♦ R [x1 , x2 ] tỗ t i {1, . . . , n}
s❛♦ ❝❤♦
0 ≡ qi (x1 , x2 ) = αi x1 + βi x2 , ∀ (x1 , x2 ) ∈ R2 .
❍❛② (αi , βi ) = (0, 0)✳ ❙✉② r❛
α
1
✳✳✳
αi−1
AP ei = P DA ei = P
0
αi+1
✳✳✳
ei = 0.
αn
❉♦ ✤â AP ei = 0❀ ❤❛② P ei ∈ ker A. ❚÷ì♥❣ tü✱ P ei ∈ ker B. ❙✉② r❛
P ei ∈ (ker A ∩ ker B)✱ tr♦♥❣ ✤â ei ❧➔ ❝ët tå❛ ✤ë ❝õ❛ ✈❡❝ tì ✤ì♥ ✈à t❤ù i
tr♦♥❣ Rn ✳ ✣✐➲✉ ♥➔② ♠➙✉ t❤✉➝♥ ✈ỵ✐ ❣✐↔ t❤✐➳t 0 = k = dim (ker A ∩ ker B)✳
❱➟② A, B ❦❤æ♥❣ ❙❉❈✳
(ii) ●✐↔ sû det A = 0✳
(⇒) ●✐↔ sû A, B õ tỗ t tr P ❦❤↔ ♥❣❤à❝❤ s❛♦
❝❤♦ P T AP = DA ✈➔ P T BP = DB ❧➔ ♠❛ tr➟♥ ✤÷í♥❣ ❝❤➨♦ tr♦♥❣ Rn×n ✳
❙✉② r❛
P −1 A−1 BP = P −1 A−1 P −T
P T BP = DA −1 DB
❧➔ ✤÷í♥❣ ❝❤➨♦✳ õ A1 B
() sỷ tỗ t Q ∈ Rn×n ❦❤↔ ♥❣❤à❝❤ s❛♦ ❝❤♦ Q−1 A−1 BQ =
D Rnìn tr ữớ ổ t t➼♥❤ tê♥❣ q✉→t✱ ❣✐↔ sû
D = diag (α1 In1 , . . . , αk Ink ) ✈ỵ✐ αi = αj ∈ R, ∀i = j ✈➔ n1 + . . . + nk = n✳
✶✻
❑❤✐ ✤â
−1
D = Q−1 A−1 BQ = Q−1 A−1 Q−T QT BQ = QT AQ
❙✉② r❛
QT AQ D = QT BQ
= QT BQ
=
T
QT AQ D
= DT QT AQ
T
T
= D QT AQ .
❚❤❡♦ ▼➺♥❤ ✤➲ 1.1 t❛ ❝â
QT AQ = diag (A1 , . . . , Ak )
✈ỵ✐ Ai ∈ Rni ×ni ✤è✐ ①ù♥❣✱ ∀i = 1, k. ❚ø ✤â✱
α1 In1
A1
✳✳✳
QT BQ =
αk Ink
✳✳✳
Ak
= diag (α1 A1 , . . . , αk Ak ) .
❉♦ Ai = Ai T i = 1, k tỗ t Qi ∈ Rni ×ni s❛♦ ❝❤♦
Qi T Qi = Ini ,
Ai = Qi T Λi Qi , tr♦♥❣ ✤â Λi ❧➔ ữớ ,
ợ ồ i = 1, k õ
QT BQ .
✶✼
T
Q1 Λ1 Q1
✳✳✳
QT AQ =
Q1
=
T
Λ1
˜
=Q
✳✳✳
Qk T
Qk T Λk Qk
Λ 1
✳✳✳
Λk
Q1
✳✳✳
Qk
✳✳✳
Λk
T
˜ ,
Q
tr♦♥❣ ✤â
T
Q1
✳✳✳
˜=
Q
Qk T
.
❚÷ì♥❣ tü✱
α1 Λ1
˜
QT BQ = Q
✳✳✳
αk Λ k
T
˜ .
Q
❙✉② r❛
˜ T QT AQQ
˜ = diag (Λ1 , . . . , Λk ) ,
Q
˜ T QT BQQ
˜ = diag (α1 Λ1 , . . . , αk Λk ) .
Q
˜✳
❱➟② A ✈➔ B ❧➔ ❙❉❈ ✤÷đ❝ ❜ð✐ ♠❛ tr➟♥ P = QQ
(2) ●✐↔ sû (ker A ∩ ker B) = k > 0. ❉♦ Rn ❧➔ ♠ët ❦❤ỉ♥❣ ❣✐❛♥ ✈❡❝ tì
✶✽
❊✉❝❧✐❞ ♥➯♥ t❛ ❝â t❤➸ ❧➜② {u1 , . . . , uk , uk+1 , . . . , un } ❧➔ ♠ët ❝ì sð trü❝ ❝❤✉➞♥
❝õ❛ Rn s❛♦ ❝❤♦ {u1 , . . . , uk } ❧➔ ♠ët ❝ì sð trü❝ ❝❤✉➞♥ ❝õ❛ (ker A ∩ ker B)✳
✣➦t U = ([u1 ]e , . . . , [un ]e ) = (u1 , . . . , un ) ❧➔ ♠❛ tr➟♥ ✤ê✐ ❝ì sð tø (e)
s❛♥❣ (u)✳ ❑❤✐ ✤â U T U = In ✳ ❍ì♥ ♥ú❛✱
T
u1
uT
2
T
U AU = A u1 , u2 , . . . , un
✳✳✳
uTn
= uTi Auj , ∀i, j = 1, n
0k 0
,
=
˜
0 A
✈➔
T
u1
uT
2
T
U BU = B u1 , u2 , . . . , un
✳✳✳
uTn
= uTi Buj , ∀i, j = 1, n
0k 0
,
=
˜
0 B
˜ B
˜ ∈ R(n−k)×(n−k) ❧➔ ố ự
tr õ A,
> 0 t tỗ t 0 = x˜ ∈ ker A˜ ∩ ker B
˜
◆➳✉ dim ker A˜ ∩ ker B
0k
Rn−k ✳ ❙✉② r❛ 0 = x = ∈ Rn×1 ✳ ❑❤✐ ✤â
x˜
⊆
✶✾
U T AU x =
0k 0
x = 0,
0 A˜
0k 0
x = 0.
U T BU x =
˜
0 B
❙✉② r❛
0 = y = U x ∈ ker A,
0 = y = U x ∈ ker B.
❉♦ ✤â y ∈ (ker A ∩ ker B)✳ ❍ì♥ ♥ú❛✱ ∀j = 1, k, t❛ ❝â
uTj U x = uTj y
= uTj . u1 , . . . , uk , uk+1 , . . . , un . x
= uTj u1 , . . . , uTj uk , uTj uk+1 , . . . , uTj un . x
0
✳
✳✳
j
∨
= 0, . . . , 0, , , 0, . . . , 0
1
0
x˜
= 0.
❙✉② r❛ y ⊥ (ker A ∩ ker B)✳ ❚ø ✤â s✉② r❛ y = 0✱ ♠➙✉ t❤✉➝♥✳ ❉♦ ✤â
˜ = 0.
dim ker A˜ ∩ ker B
❍ì♥ ♥ú❛
˜ B
˜ ❧➔ ❙❉❈
A,
˜ ❧➔ ❙❉❙
⇔ A˜−1 B
✷✵
⇔
⇔
−1
0 0
0 0
k
❧➔ ❙❉❙
k
˜
˜
0 B
0 A
P T AP
−1
P T BP
❧➔ ❙❉❙
⇔ P −1 A−1 BP ❧➔ ❙❉❙
⇔ A−1 B ❧➔ ❙❉❙
⇔ A, B ❧➔ ❙❉❈.
❉ò♥❣ ♣❤➙♥ t➼❝❤ P♦❧❛r ð ▼➺♥❤ ✤➲ ✶✳✼✱ t❛ ❝â t❤➯♠ ♠ët sè ✤✐➲✉ ❦✐➺♥
t÷ì♥❣ ✤÷ì♥❣ ✤➸ ♠ët ❤å ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ t❤ü❝ ❧➔ SDC ♥❤÷ s❛✉✳
▼➺♥❤ ✤➲ ✷✳✸✳ ❈❤♦ A, B ∈ Rn×n ❧➔ ❤❛✐ ♠❛ tr➟♥ ✤è✐ ①ù♥❣✳ ❈→❝ ✤✐➲✉ ❦✐➺♥
s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣✿
(i) {A, B} ❝❤➨♦ õ tữỡ ỗ tớ ữủ
(ii) ỗ t ởt tr➟♥ ①→❝ ✤à♥❤ ❞÷ì♥❣ X s❛♦ ❝❤♦
AXB = BXA.
❚r♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔②✱ ♥➳✉ ❝❤å♥ Q =
√
X
0 ♥❤÷ tr♦♥❣ ▼➺♥❤ ✤➲ ✶✳✽
t❤➻ ♠å✐ ♠❛ tr➟♥ ❝â ❞↕♥❣ P = U Q✱ ợ U tr trỹ tũ ỵ
õ tữỡ ỗ tớ tr A ✈➔ B ✳
❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ▼➺♥❤ ✤➲ ✷✳✶✱ A, B õ tữỡ ỗ tớ
ữủ ❝â P ∈ Rn×n ❦❤↔ ♥❣❤à❝❤ s❛♦ ❝❤♦ P T AP ✈➔ P T BP
❣✐❛♦ ❤♦→♥ ♥❤❛✉✳ ⑩♣ ❞ö♥❣ ♣❤➙♥ t➼❝❤ P♦❧❛r ❝❤♦ P t❛ ❝â
P = QU, U T U = I, QT = Q
0.
✷✶
❑❤✐ ✤â
P T AP
P T BP = P T BP
⇔ U T QT AQU
P T AP
U T QT AQU = U T QT BQU
U T QT AQU
⇔ AQQT B = BQQT A
⇔ AQ2 B = BQ2 A.
❑❤✐ ✤â X = Q2
❱➼ ❞ö ✷✳✶✳
0 t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❝õ❛ ▼➺♥❤ ✤➲✳
0 1
1 1
,B =
.
❛✮ ❳➨t A =
1 1
1 0
⑩♣
ử
t tr sỹ tỗ t ❝õ❛ ♠ët ♠❛ tr➟♥ X =
x y
0 t❤ä❛ ♠➣♥ AXB = BXA✳
y z
❚❤❡♦ ▼➺♥❤ ✤➲ ✶✳✾✱
X
0⇔
x > 0,
xz − y 2 > 0.
▼➦t ❦❤→❝✱
AXB = BXA
0 1 x y 1 1
1 1 x y 0 1
=
⇔
1 1 y z
1 0
1 0 y z
1 1
y+z
y
y + z x + 2y + z
=
⇔
x + 2y + z x + y
y
x+y
⇔ x + 2y + z = y
⇔ x + y + z = 0.