Myers
Chem 115
Anionic Cyclization Reactions
Reviews:
Hauser Annulation
Mal, D.; Pahari, P. Chem. Rev. 2007, 107, 1892–1918.
• Annulation reactions of 3-phenylsulfonyl isobenzofuranones with Michael acceptors provide 1,4dihydroxynaphthalenes:
Rathwell, K.; Brimble, M. Synthesis 2007, 643–662.
Mitchell, A. S.; Russell, R. A. Tetrahedron 1995, 51, 5207–5236.
• Anionic Michael-Dieckmann condensation reactions provide a powerful method for the
construction of six-membered rings.
O
O
Generalized Reaction Scheme
O
THF, –78 ºC
SO2Ph
O
OR
1. LDA
O
O
base
OH O
2.
O
CH3
CH3
CH3
>86%
Li SO2Ph
OH
OH O
OR
X
CH3
O
R'
X
X
R'
Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178–180.
• It is generally accepted that the transformation proceeds by an initial Michael addition reaction
followed by Claisen cyclization and elimination of phenylsulfinic acid:
• X = H, CN, SO2Ph, SPh, F, Br, SnR3, P(O)(OR)2, CO2CH3
• Base = LDA, LiHMDS, LiOt-Bu, KOt-Bu, NaHMDS, KHMDS, LiTMP, etc
O
• In a very early example, Schmid showed that esters of homophathalic acid undergo annulation
reactions:
O
LDA
O
SO2Ph
CO2CH3
CH3
CH3
O
OLi
O
CH3
CH3
SO2Ph
SO2Ph
NaOMe, MeOH
OCH3
OCH3
+
O
OH O
O
CO2CH3
CH3
OLi
95 ºC, 50%
CH3
CO2CH3
O
Ph S O
O
OH O
(relative stereochemistry
not determined)
CH3
CH3
OH
OLi O
O
CH3
CH3
LiO SO2Ph
O
CH3
CH3
SO2Ph
Eisenmuth, W.; Renfroe, H. B.; Schmid, H. Helv. Chim. Acta. 1965, 48, 375–379.
Fan Liu
1
Myers
Chem 115
Anionic Cyclization Reactions
Kraus Annulation
• Conjugate addition of a phenyl sulfoxide derivative followed by intramolecular condensation and
thermal elimination of phenylsulfenic acid gives 1-hydroxynaphthalenes:
2.
CO2Et
CO2Et
1. LDA
O
S
Ph
O
O
S
O
CH3
CH3
O
2.
OCH3 O
O
1. LDA, HMPA
O
THF, –78 ºC
CH3
SOPh
Ph
O
O
O
CH3
Li
THF, –78 ºC
O
• 3-cyanoisobenzofuranones are effective substrates for anionic cyclizations:
Li CN
CN
O
–78 ! 0 ºC
3. K2CO3, MeI
acetone, 60 ºC
OCH3
>50%
66 ºC
Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 26, 2263–2266.
OH O
Comparison of Hauser and Kraus Annulations
CH3
CH3
70%
• While yields for the two methods can be similar in some cases, in other cases the Kraus
annulation was found to be more effective, likely because the cyanoisobenzofuranone nucleophile
is less hindered and more soluble in the reaction medium:
O
O
Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178–180
OH O
O
O
• A closely related method was reported by van Leusen, which involves thermal elimination of
phenylsulfinic acid:
O
CH3O
SO2Ph THF, –78 ºC
O
CH3O
Li SO2Ph
CH3
–78 ! 65 ºC
+
CH3O
OH
35%
CH3
O
OH
CO2Et
O S
Ph
O
O
LiOt-Bu
CO2Et
1. NaH, DME, 23 ºC
CO2Et
CO2Et
2. MeOH, 40 ºC
CO2Et
O
OH O
CH3O
Wildeman, J.; Borgen, P. C.; Pluim, H.; Rouwette, P. H. F. M.; van Leusen, A. M. Tetrahedron
Lett. 1978, 25, 2213–2216.
O
O
76%
O
CH3O2C
O
LiOt-Bu
CN
THF, –60 ºC
CH3
O
CH3O
Li CN
–60 ! 23 ºC
CH3O
O
86% O
CH3
Hauser, F. M.; Combs, D. W. J. Org. Chem. 1980, 45, 4071–4073.
Mal, D.; Patra, A.; Roy, H. Tetrahedron Lett. 2004, 45, 7895–7898.
Fan Liu
2
Myers
Chem 115
Anionic Cyclization Reactions
• In the following example, the Kraus annulation was reported to be a "much cleaner reaction":
• Staunton-Weinreb Annulations
• Staunton and Weinreb showed independently in 1979 that o-toluates are suitable nucleophiles for
anionic cyclization reactions.
CH3O
CH3O
O
CH3O
O
OH O
2. cyclohexenone
1. LDA, HMPA
O
O
THF, –78 ºC
–78 ! 23 ºC
Li SO2Ph
SO2Ph
CH3O
"moderate yield"
OCH3
OH
CH3O
CH3O
CH3O
O
CH3O
O
CH3O
O
1. LDA
OCH3
CH3O
THF, –78 ºC
CH3
O
Li
OH O
2. cyclohexenone
1. LDA, HMPA
CH3O
O
O
THF, –78 ºC
Li CN
CN
OH O
–78 ! 23 ºC
TBSO
OH
"a much cleaner reaction"
80%
CH3O
H
CH3
O
O
TBSO
O
CH3O
CH3
O
H
O
Li, T.-T.; Walsgrove, T. C. Tetrahedron Lett. 1981, 22, 3741–3744.
40%
Dodd, J. H.; Weinreb, S. M. Tetrahedron Lett. 1979, 38, 3593–3596.
• Sammes Annulation
O
• It was shown that a phthalide anion is a suitable reaction partner en route to 1-hydroxynaphthalenes:
CH3O
CH3O
O
O
O
O
CH3O
CH3
O
THF, –40 ºC
CH3O
CH3O
O
LDA
OCH3
OCH3
LDA, HMPA
O
THF, –78 ºC
OCH3
CH3
O
OCH3
CH3O
CH3
Li
–40 ! 23 ºC
Li
58%
CH3O
OH O
O
OCH3
CH3
CH3O
OCH3
BF3•OEt2
CH3
CH2Cl2, 23 ºC
43%
O
CH3O
OH
CH3O
OH O
CO2CH3
O
OCH3
CH3O
CH3
LDA, THF
–15 ºC, 70%
CH3O
CH3
O
O
Broom, N. J. P.; Sammes, P. G. J. Chem. Soc. Chem. Commun. 1978, 162–164.
Broom, N. J. P.; Sammes, P. G. J. Chem. Soc. Perkin Trans. 1 1981, 465–470.
OCH3
Evans, G.; Leeper, F. J.; Murphy, J. A.; Staunton, J. J. Chem. Soc. Chem. Commun. 1979, 205–
206.
Leeper, F. J.; Staunton, J. J. Chem. Soc. Chem. Commun. 1979, 5, 206–207.
Fan Liu
3
Myers
Other Nucleophiles
• This annulation reaction can also be done in a single step:
• Phenylsulfenylphthalide, originally reported by Kraus, was also found to be a competent
annulation partner:
O
CH3O
CH3O
O
OCH3
CH3O
Chem 115
Anionic Cyclization Reactions
CH3
O
LDA
CH3
OCH3
THF, –78 ºC
O
CH3
O
O
–78 ! 23 ºC
CH3O
O
Li
O
CH3O
CH3O
OH O
OH O
OEt
1. LDA, HMPA
OEt
O
THF, –78 ºC
SPh
–78 ! 23 ºC
CH3O
Li SPh
CH3O
OH
53%
O
CH3
CH3O
CH3
Kraus, G. A.; Cho, H.; Crowley, S.; Roth, B.; Sugimoto, H.; Prugh, S. J. Org. Chem. 1983, 48, 3439–
3944.
79%
• A phenyl ester was employed in a synthetic approach to (+)-pillaromycinone:
O
H
H
OTBS
CH3
CH3O
CO2Ph
CH3
CH3O
CH3O
LDA
H
CO2Ph
THF, –78 ºC
• In the following example, use of the traditional Hauser cyclization substrate, 3-phenylsulfonyl
isobenzofuranone, did not afford the desired product. Using phenylsulfenyl phthalide, however,
provided the desired product in good yield:
O
O
O
Li
CH3O
CH3O
O
O
LiOt-Bu
O
OCH3
OCH3
O
CH3O
CH3
THF, –78 ºC
CH3O
OH
O
H
H
OTBS
CH3
H
O
SPh
Li SPh
CeCl3
–78 ! 26 ºC
62%
CH3O
OH O
O
HO
CH3O
White, J. D.; Nolen, E. G.; Miller, C. H. J. Org. Chem. 1986, 51, 1152–1155.
• In the Stauton-Weinreb annulation reaction, it is imperative that an alkoxy group is present ortho
to the ester group to prevent self-coupling of the nucleophile.
OCH3
OCH3
CH3
Hauser, F. M.; Dorsch, W. A.; Mal, D. Org. Lett. 2002, 4, 2237–2239.
Fan Liu
4
Myers
Chem 115
Anionic Cyclization Reactions
• Homophthalide anhydrides were also found to be good cyclization partners:
• Alternatively, homophthalide anhydrides can be used:
O
CO2CH3
Ph
OH
O
O
NaH
O
O
THF, 0 ºC
CO2CH3
CO2CH3
O
O
O
NaH
O
CO2CH3
–78 ! 23 ºC
Ph
Ph
O
O
O THF, 0 ºC
94%
OH O
Ph
O
–78 ! 23 ºC
O
HO2C
Na
Na
O
83%
(relative stereochemistry
not determined)
Tamura, Y.; Sasho, M.; Nakagawa, K.; Tsugoshi, T.; Kita, Y. J. Org. Chem. 1984, 49, 473–478.
Tamura, Y.; Sasho, M.; Nakagawa, K.; Tsugoshi, T.; Kita, Y. J. Org. Chem. 1984, 49, 473–478.
• Synthesis of Cyclohexanone Derivatives (Non-Aromatizing Cyclizations)
• Michael-Dieckmann cyclization of o-toluate anions with Michael acceptors affords cyclohexanone
derivatives:
Swenton Annulation
• Swenton showed that Schmid's anionic cyclization nucleophile (shown on
page 1) can be applied to quinone monoacetals under modified conditions:
OH
CH3O
CH3O
O
O
O
OH
CH3
CO2CH3
LDA
OCH3
CO2CH3
O
THF, –78 ºC
CH3
OCH3
CH3
0 ºC
Li
NaH, THF
+
CO2CH3
CH3O OCH3
25 ºC, 60%
CH3O2C
CH3O
OCH3
CH3O
O
O
O
OCH3
O
CO2CH3
O
CH3
OH
NaH, THF
+
CO2CH3
CH3
CH3O OCH3
HCl, CH3OH
65 ºC, 40%
CH3
Tarnchompoo, B.; Thebtaranonth, C.; Thebtaranonth, Y. Synthesis 1986, 785–786.
25 ºC
CH3O2C
CH3
OCH3
OCH3
pTSA, C6H6
80 ºC, 40%
CH3O
N
EtO
CH3O
OCH3
CH3
O
O
O
LDA
THF, –78 ºC
O
OCH3
N
EtO
O
Li
O
OH
CH3O
, EtOH
CH3
CH3O2C
OCH3
Chenard, B. L.; Anderson, D. K.; Swenton, J. S. J. Chem. Soc. Chem. Commun. 1980, 932–933.
–78 ! 24 ºC
Boger, D. L.; Zhang, M. J. Org. Chem. 1992, 57, 3974–3977.
Clive, D. L. J.; Sedgeworth, J. J. Heterocyclic Chem. 1987, 24, 509–511.
OH
O
N
EtO
O
83%
Fan Liu
5
Myers
Chem 115
Anionic Cyclization Reactions
• Stereoselective Synthesis of Cyclohexanone Derivatives
• One of the first stereoselective anionic cyclization reactions was reported in 1986 in the synthesis
of olivin trimethyl ether:
• Synthesis of bioxanthracene (–)-ES-242-4:
O
CH3O
O
CH3O
CH3O
1.
O
DME, –78 ºC
O
CH3O
CH3O
LDA
O
CH3
Li
CO2CH3
–78 ! 23 ºC
2. dehydration
O
CH3O
CH3
OMOM
CH3O
CO2CH3
LDA
CO2CH3
THF, –78 ºC
CH3
CH3O
Li
–78 ! 0 ºC
55%
(conditions not specified)
CH3O
CH3O
CH3O
Li
OCH3
O
OCH3
LDA, DMPU
CH3O
OCH3
THF, –78 ºC
CH3O
O
CH3O
OH
CH3O
O
OCH3
O
CH3O
CH3
OH
OH
H3C
CH3O
H
O
O
OH O
CH3
CH3O
CH3
CH3
OMOM
single diastereomer
H
8 steps
CH3
O
O
CH3O
CH3
H3C
CH3O
O
H
H
O
CH3O
O
>51%
CH3O
CH3
OH
(–)-ES-242-4
O
CH3
Tatsuta, K.; Yamazaki, T.; Mase, T.; Yoshimoto, T. Tetrahedron Lett. 1998, 39, 1771–1772.
OH O
OCH3
Franck, R. W.; Bhat, V.; Subramaniam, C. S. J. Am. Chem. Soc. 1986, 108, 2455–2457.
Fan Liu
6
Myers
Chem 115
Anionic Cyclization Reactions
• Stereoselective anionic cyclizations were employed in the synthesis of tetracycline antibiotics. An
initial experiment using an organostannane showed that Michael addition occurred with complete
stereoselectivity:
• By using a phenyl ester and LDA for anion formation, Michael-Claisen cyclization occurred in high
yields and with excellent diastereoselectivities:
CH3
H
Et
N(CH3)2
O
N
CH3
Sn(CH3)3
OCH3
CH3O
BocO
CH3
O
O
Li
OCH3
n-BuLi
THF, –78 ºC
CH3O
O
THF, –78 ºC
O
BocO
–78 ! 0 ºC
BnO2CO
O
H
N(CH3)2
O
OBn
O
OTBS
1.
Li
OPh
LDA, TMEDA
OPh
N
O
2. TBSOTf, 98%
OBn
O
OTBS
O
OH N(CH3)2
H3C H H
H
OH
H3C
H
H
NH2
N(CH3)2
HO
O
O
OH O H O
O
TBSO
O
CH3O
H3CO
OTBS
• The stereochemical outcome in the addition step is consistent with a pseudoaxial addition to the
enone, from the "-face opposite the bulky tert-butyldimethylsilyloxy substituent:
2. H2, Pd, THF
BocO
(–)-Doxycycline
OBn
single diastereomer
1. HF, MeCN
MeOH, 90%
N
O
OBn
H3C H H O H N(CH3)2
O
N
N(CH3)2
CH3
O
OTBS
OBn
79%, dr > 20:1
N(CH3)2
Li
OPh
LDA, TMEDA
OPh
BocO
OH O
THF, –78 ºC
O
BocO
–78 ! –10 ºC
H
O
N(CH3)2
O
N
O
Nuc
H
OBn
N(CH3)2
O
N
O
O
OTBS
O
OTBS
(CH3)2N
OBn
H
H
N(CH3)2
OH
NH2
HO
O
OH O H O
Minocycline
Sun, C.; Wang, Q.; Brubaker, J. D.; Wright, P.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.;
Wang, Y.-M.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913–1717927.
Carpenter, T. A.; Evans, G. E.; Leeper, F. J.; Staunton, J.; Wilkinson, M. R. J. Chem. Soc. Perkin
Trans. 1 1984, 1043–1051.
O
1. H2, Pd black
(CH3)2N
H
H
N(CH3)2
CH3OH, dioxane
O
N
2. HF, CH3CN, 74%
BocO
OH O
O
OTBS
OBn
83%, dr > 20:1
Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D.; Myers, A. G. Science 2005, 308, 395–398.
Sun, C.; Wang, Q.; Brubaker, J. D.; Wright, P.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.;
Wang, Y.-M.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913–1717927.
Fan Liu
7
Myers
Chem 115
Anionic Cyclization Reactions
• In the most recently reported route, two consecutive stereoselective anionic cyclization reactions
were used to construct tetracycline antibiotics. In the first cyclization, addition of KHMDS to
deprotonate the final Claisen product was crucial to prevent quenching of the enolate intermediate
by proton transfer from the product or methanol:
CH3O
CO2CH3
CH3O
LDA
CO2CH3
THF, –78 ºC
Li
CH3
N(CH3)2
H3C CH3
OBn
O
O
Na
CH3O
N
O
–78 ! 23 ºC
N(CH3)2
NaHMDS, THF
O
CH3O
LiBr
N
O
O
CH3O
O
OH
H
O
–78 ! –15 °C
80%, dr > 20:1
Li
N(CH3)2
OBn
H
H
O
O
OTBS
O
O
CH3
CH3
O
H
O
O
CH3
CH3
N(CH3)2
99%, single diastereomer
O
O
N
N
–78 ! –15 °C
O
H CH3
H
H
H
H3C CH3
2. KHMDS
CO2Ph
O
H CH3
OBn
H
R
H
H
1.
OBn
H
O
OH
OBn
White, J. D.; Demnitz, F. W. J.; Xu, Q.; Martin, W. H. C. Org. Lett. 2008, 10, 2833–2836.
• In the examples above, an alkoxy substituent must be present ortho to the ester functionality to
prevent dimerization of the nucleophile.
H
H
N(CH3)2
O
N
R
OBn OH O
O
OTBS
OBn
2 steps
tetracycline
antibiotic
candidates
• More than 3000 fully synthetic novel tetracycline antibiotic candidates have been prepared using
stereoselective anionic cyclization reactions.
• This limitation was overcome in tetracycline synthesis by deprotonating the substrate in the
presence of the Michael acceptor:
N
CH3
H
N(CH3)2
+
N
OPh
O
O
O
O
OTBS
OBn
LDA, HMPA
N
H
H
N(CH3)2
O
N
–95 ! –50 ºC
OH O
O
OTBS
OBn
76%, dr > 20:1
Kummer, D. A.; Li, D.; Dion, A.; Myers, A. G. Chem. Sci. 2011, 2, 1710–1718.
Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D.; Myers, A. G. Science 2005, 308, 395–398.
Sun, C.; Wang, Q.; Brubaker, J. D.; Wright, P.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.;
Wang, Y.-M.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913–1717927.
Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D.; Myers, A. G. Science 2005, 308, 395–398.
Fan Liu
8
Myers
Chem 115
Anionic Cyclization Reactions
• Another strategy permitting cyclization of aromatic ester substrates lacking ortho substituents
involved in situ anion formation by lithium-halogen exchange, in the presence of the Michael
acceptor:
• A stereoselective anionic cyclization reaction is used in the industrial synthesis of a novel
tetracycline antibiotic candidate:
1. LDA (1.13 equiv)
Et3N•HCl
(0.5 mol%)
F
CH3
H
Br
OPh
N(CH3)2
O
+
O
N
O
O
OTBS
OBn
H
H
N(CH3)2
Bn2N
O
n-BuLi, THF
OPh
OH O
Li
OPh
Bn2N
OBn O
(600 g)
OBn
O
OTBS
2. LiHMDS
(0.11 equiv)
OBn O
N
–100 ! –70 ºC
81%, dr > 20:1
THF, –70 ºC
F
LiHMDS
(0.92 equiv)
H
N(CH3)2
O
N
–78 ! –10 ºC
O
H
N(CH3)2
Br
+
OPh
CH3O
O
O
N
O
O
OTBS
OBn
H
H
N(CH3)2
n-BuLi, THF
–100 ! 0 ºC
75%, dr > 20:1
O
N
CH3O
OH O
OBn
O
OTBS (524 g)
O
OTBS
F
H
O
OBn
N
N
H
Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D.; Myers, A. G. Science 2005, 308, 395–398.
Sun, C.; Wang, Q.; Brubaker, J. D.; Wright, P.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.;
Wang, Y.-M.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913–1717927.
N(CH3)2
OH
NH2
O
OH OH O H O
Eravacycline
• In the example above, attempted cyclization by direct deprotonation of the corresponding omethylnaphthalene was not successful.
H
O
F
H
H
N(CH3)2
3 steps
O
N
Bn2N
OBn OH O
O
OTBS
OBn
94% (934 g)
• The use of a small amount of Et3N•HCl in the deprotonation step, which provides a source of LiCl,
was found to be crucial in providing consistent and clean cyclization results on a manufacturing
scale.
• Because the presence of excess LDA appeared to promote the formation of byproducts, a weaker
base, LiHMDS, was used as a substitute to deprotonate the acidic proton in the final product and
drive the Claisen reaction to completion.
Ronn, M.; Zhu, Z.; Hogan, P. C.; Zhang, W.-Y.; Niu, J.; Katz, C. E.; Dunwoody, N.; Gilicky, O.;
Deng, Y.; Hunt, D. K.; He, M.; Chen, C.-L.; Sun, C.; Clark, R. B.; Xiao, X.-Y. Org. Process Res.
Dev. 2013, 17, 838–845.
Fan Liu
9
Myers
Chem 115
Anionic Cyclization Reactions
• Synthesis of a dideoxydynemicin analog:
Examples in Synthesis
• Synthesis of 1,4-Dihydroxynaphthalene Derivatives
OH
H
N
OH
t-BuLi
1.
O
LDA
O
THF, –78 ºC
SO2Ph
THF, –78 ºC
Li SO2Ph
CH3O
O
CH3O
O
CH3
O
O
OH
–78 ! 23ºC
O
OCH3
OCH3
OH
• Kraus annulation proved to be ineffective for the synthesis of dynemicin A itself. Instead, a DielsAlder cycloaddition was employed:
OEt
H
N
O
1. KHMDS, THF, –78 ºC
2. TMSCl•Et3N, –20 ºC
TMSO
CH3
CO2Si(i-Pr)3
O
OCH3
TMSO
TMSO
2. m-CPBA, CH2Cl2
0 ºC, 65%
O
H
O
O
TMSO
–20 ! 55ºC, 75%
OTMS
O
CH3O
CO2CH3
2. Methylation
(conditions not
specified)
CH3O
O
LDA
O
O
O
THF, –78 ºC
CH3O
Li SO2Ph
CH3O
SO2Ph
OH O
H
HN
CH3
CO2H
H
O
OH O
TMSO
O
OCH3
CH O
CH3O 3
OH
H
HN
O
2. K2CO3, Me2SO4,
acetone, 65%
1. PhSH, pTSA
C6H6, 80 ºC, 93%
1.
Li CN
CN
OEt
O
O
O
OCH3
OCH3
O
O
O
O
O
O
• Two consecutive anionic annulation reactions were employed for the synthesis of the core
structure of anthracyclines:
CH3
OH
Dynemicin A
MnO2, 3HF•Et3N
H
H
HN
CH3
CO2Si(i-Pr)3
O
O
THF, 23 ºC, 53%
TMSO
OCH3
H
OR OH
R = TMS
CO2CH3
CH3O
OCH3
87%
Hauser, F. M.; Prasanna, S. J. Org. Chem. 1979, 44, 2596–2598.
Myers, A. G.; Fraley, M. E.; Tom, N. J. J. Am. Chem. Soc. 1994, 116, 11556–11557.
Myers, A. G.; Fraley, M. E.; Tom, N. J.; Cohen, S. B.; Madar, D. J. Chem. Biol. 1995, 2, 33–43.
Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. 1997, 119,
6072–6094.
Fan Liu
10
Myers
Chem 115
Anionic Cyclization Reactions
O
• Synthesis of Trioxacarcin A:
CH3O
1.
CN
O
CH3
MOMO
O
CH3
LiOt-Bu
Li CN
THF, –78 ºC
MOMO
O
H
O
CH3O
CH3O Li
THF, –78 ºC
OCH3 CN
OBn
OTBS
–78 ! 0 ºC
CN
94%
OTBS
O
O
CH3
O
LiHMDS
O
OPMB
CH3O
CH3
CH3O
O
Si(CH3)3 CH
3
nPr
O
CH3
O
O
–78 ! –22 ºC
2. Me2SO4
CH3O
OH O
–22 ! 23 ºC
CH3O
CH3O
Si(CH3)3 CH
3
nPr
O
CH3
O
O
H
OH
OBn
OTBS
Liau, B. B.; Milgram, B. C.; Shair, M. D. J. Am. Chem. Soc. 2012, 134, 16765–16772.
H3C
HO
CH3O
CH3O
O CH3
O
H
OH
O
CH3
CH3
O
HO
CH3 O
H O
OH
O
H
H
O
H
OAc
CH3
CH3O
O
H
H O
• Synthesis of viridicatumtoxin B:
CH3
CH3O
CH3
OBn O
OH
CH3O
1. NaH
+
O
OH O
CH3O OCH3
CH3O OCH3
O
OTBS
MOMO
O
OPMB
O
0 ! 23 ºC
2. DBU
toluene, 65 ºC
OBn O
OH
CSA, CH2Cl2
25 ºC, 99%
trioxacarcin A
CH3
CH3 OCH3
OCH3
CH3
CH3O
Svenda, J.; Hill, N.; Myers, A. G. Proc. Natl. Acad. Sci. 2011, 108, 6709–6714.
Magauer, T.; Smaltz, D. J.; Myers, A. G. Nat. Chem. 2013, 5, 886–893.
OCH3
5 steps
CH3O
OBn O
OBn OH O
OH
(±)
O
O
Si(CH3)3
O
N
PhO
O
OBn
1. t-BuOK
toluene, 25 ºC, 91%
2. TBAF, NH4F
THF, 25 ºC, 86%
CH3
CH3O
CH3
CH3 OCH3
OCH3
H
OBn OH OH O
O
N
OBn
dr = 2 : 1
Nicolaou, K. C.; Nielewski, C.; Hale, C. R. H.; Ioannidou, H. A.; ElMarrouni, A.; Koch, L. G. Angew.
Chem. Int. Ed. 2013, 52, 8736–8741.
Fan Liu
11
Myers
• Synthesis of 1-Hydroxynaphthalene Derivatives
• In Danishefsky's synthesis of dynemicin, a homophthalide anhydride substrate was found to be a
superior cyclization partner, whereas the Kraus annulation failed to provide the desired product.
• Synthesis of tetracycline:
Li CH
3
CH3
LDA
O
O
CH3O
Chem 115
Anionic Cyclization Reactions
OH
• In this synthesis, a series of oxidation reactions provided the anthraquinone of dynemicin A:
O
THF, –40 ºC
H
O
CH3O
NHCbz
OBn
H
N
OBn
O
CH3
OH
OCH3
HO CH3
H
OH O
OBn
OH
CH3O
HO CH3
15 steps
H
OH O
MOMO
O
NHCbz
OBn
OBn
CH3O
O
MOMO
O
O
O
O
O
THF, 0 ºC
MOMO
O
OH
N(CH3)2
OH
O
OH O H O
H
Li
LiHMDS
PhI(OCOCF3)2
THF, 0 ºC
NH2
HO
CO2MOM
O
80%
MOMO
SOCl2, Et3N
CH2Cl2
–30 ºC, 90%
NHCbz
H
OBn
CH3
H
HN
MOMO
CH3
CO2MOM
O
OCH3
(–)-Tetracycline
H
Tatsuta, K.; Yoshimoto, T.; Gunji, H.; Okado, Y.; Takahashi, M. Chem. Lett. 2000, 646–647.
MOMO
O
OH
• Synthesis of a benanomicinone analogue:
CH3O
OCH3
CO2CH3
SOPh
CH3O
Br
CH3O
LiOt-Bu
THF, DMSO
OCH3
CO2CH3
SOPh
CH3O
Br
OCH3
MOMO
OCH3 Li
H
N
CH3
CO2MOM
OCH3
H
O
CH3O
OCH3
OCH3
O
OCH3
OCH3
CH3O
31% (2 steps)
OH O 15% (4 steps)
CH3
CO2H
O
1. air, THF, 25 ºC
2. MgBr2, Et2O
0 ! 25 ºC
OCH3
H
OH O
OH
Dynemicin A
OCH3
CH3O
Br
OCH3
OCH3
MOMO
OH O
O
H
HN
CH3
CO2CH3
Hauser, F. M.; Liao, H.; Sun, Y. Org. Lett. 2002, 4, 2241–2243.
CH3O
1.
CH3
CO2CH3
2. (CH3)2SO4, K2CO3
acetone
Shair, M. D.; Yoon, T.-Y.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1995, 34, 1721–1723.
Shair, M. D.; Yoon, T.-Y.; Mosny, K. K.; Chou, T. C.; Danishefsky, S. J. J. Am. Chem. Soc. 1996,
118, 9509–9525.
Fan Liu
12
Myers
• The Shair group found that a particularly difficult annulation reaction was best carried out using a
benzyl fluoride as the nucleophile:
CH3O
CH3
Chem 115
Anionic Cyclization Reactions
CH3 n Si(CH3)3
Pr O
O
O
O
BnO
H
TBSO
O
OCH3
CH3O
O
CH3O
+
F
H
F
OCH3
O
OCH3
OCH3
OTBS
OBn
+
O
O
O
OCH3
• A bidirectional approach to hibarimicinone: note the use of two different nucleophiles to form the C
and F rings:
O
On
CH3
Pr
Si(CH3)3 CH3
CH3
CH3 n Si(CH3)3
Pr O
O
O
O
O
CH3O
CH3O
OBn
O
BnO
H
TBSO
NC
1. LiTMP, THF, –78 ºC
2. HMDS, –78 ! –35 ºC
3. MgBr2•OEt2
BnO
OCH3
SPh
H
OCH3
OTBS
OBn
O
O
O
CH3
Pr
Si(CH3)3 CH3
On
O
OBn
racemic–atropisomers
–35 ! 0 ºC
LiHMDS, THF, –78 ! 0 °C;
KHMDS, 0 ! 23 ºC
50–59%
CH3
NaHCO3, TFE
H2O, 80 ºC
59% (2 steps)
CH3
F
H
H
H
F
O HO
OCH3
OCH3
OTBS
OBn
O
O
BnO
H
TBSO
O
CH3
O
Pr
Si(CH3)3CH3
On
CH3
OCH3
CH3O
CH
O
Si(CH
)
3
3 3
CH3
nPr
O
OH OBn
O
O
O
BnO
H
TBSO
CH3O
CH3O
Si(CH3)3
CH3
nPr
O
OH O
O
O
O
BnO
H
TBSO
CH3O
CH3O
CH
O
Si(CH
)
3
3
3
CH3
nPr
O
OH O
O
O
OCH3
H
OH O
OCH3
OCH3
OCH3
OTBS
OBn
O
BnO HO
OCH3
OH OBn
H
O
CH3
Pr
Si(CH3)3CH3
On
O
~1.3:1 mixture of 2 separable atropisomers
OTBS
OBn
O
O
SPh
H
DMTSF, DTBMP, MeCN
0 ! 23 ºC
CH3
Pr
CH
Si(CH3)3 3
On
O
2 atropisomers
OCH3
• The electronegative fluorine atom stabilizes the anion and is sterically unencumbered.
CH3
• In the absence of the fluorine atom, Michael addition occurred at –78 ºC but the subsequent
Claisen cyclization could never be driven to completion. The alternative Hauser and van Leusen
substrates did not afford the desired product.
• Addition of HMDS prior to warming quenches excess LiTMP, which prevents substrate
decomposition in the subsequent Claisen condensation step.
Liau, B. B.; Milgram, B. C.; Shair, M. D. J. Am. Chem. Soc. 2012, 134, 16765–16772.
CH3O
Si(CH3)3
CH3
nPr
O
OH OBn
O
O
O
BnO
H
TBSO
C
H
OTBS
OBn
F
BnO HO
OCH3
O
O
CH3
Pr
Si(CH3)3CH3
On
O
OH OBn
atropisomer 1 (75%)
atropisomer 2 (89%)
Liau, B. B.; Milgram, B. C.; Shair, M. D. J. Am. Chem. Soc. 2012, 134, 16765–16772.
Fan Liu
13
Myers
Chem 115
Anionic Cyclization Reactions
Synthesis of Annulation Substrates
PhS
CH3
• Hauser Annulation Substrates
EtO2C
SR
H
O
CO2H
O
1. PhSH, C6H6
THF, –78 ºC
2. PhSSPh (4.4 equiv)
CO2Et
CO2Et
OCH3
1. LDA (3 equiv)
SPh
THF, –78 ºC
2. PhSSPh (2.2 equiv)
–78 ! 23 °C
SPh
SO2Ph
3. TFA, H2O
CO2Et
OCH3
OCH3 O
m-CPBA, K2CO3
OCH3
OCH3
CH2Cl2, 100%
CH3O
CH3O
OCH3
OCH3
O
SPh
O
O
PhO2S
O
95%
SPh
O
O
CH3O
CH3O
SPh
100%
CO2Et
O
Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178–180
TFA, H2O
OCH3
OCH3
PhS
O
CH3
CH3O
CH3O
55%
CH3
OCH3 O
yield not provided
1. LDA (6 equiv)
OCH3
OCH3
O
2. m-CPBA, CH2Cl2
OCH3
EtO2C
CH3O
CH3O
SO2Ph
O
SPh
O
PhS
Hauser, F. M.; Gauuan, P. J. F. Org. Lett. 1999, 1, 671–672.
83%
O
MOMO
Hauser, F. M.; Rhee, R. P.; Prasanna, S. Synthesis 1980, 72–74.
CH3
MOMO
H
NEt2
O
1. PhSO2Na, AcOH
80 ºC, 66%
MOMO
SO2Ph
O
2. MOMCl, DIPEA, DMF
–40 ! 23 °C, 74%
CH3
MOMO
O
Tatsuka, K.; Inukai, T.; Itoh, S.; Kawarasaki, M.; Nakano, Y. J. Antibiot. 2002, 55, 1076–1080.
SPh
O
1. LDA, HMPA
• In the following example, the sulfoxide intermediate underwent Pummerer rearrangement and the
resulting sulfonium ion was trapped by the carboxylic acid:
O
2. PhSSPh
OCH3 O
–78 ! 0 °C, 49%
OCH3 O
O
CH3
O
Kraus, G. A.; Cho, H.; Crowley, S.; Roth, B.; Sugimoto, H.; Prugh, S. J. Org. Chem. 1983, 48,
3439–3444.
CO2Et
1. NBS, CCl4
h", 84%
2. PhSH, KOH
EtOH, 97%
O
SPh
O
SPh
4. m-CPBA, CH2Cl2
O
CO2H
5. Ac2O
60% (3 steps)
O
O
O
3. KOH, MeOH, H2O
Hauser, F. M.; Dorsch, W. A. Org. Lett. 2003, 5, 3753–3754.
Fan Liu
14
Myers
Chem 115
Anionic Cyclization Reactions
O
CH3
CO2Et
S
Ph
CN
1. NBS
CHO
2. NaSPh, EtOH
CO2Et
OH
3. NaIO4
1. KCN, HCl
O
yield not provided
Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178–180
OH
OH
H2O, 0 ºC, 77%
CN
2. (COCl)2, C5H5N
O
O
DMF, MeCN
–15 ºC, 82%
O
Freskos, J. N.; Morrow, G. W.; Swenton, J. S. J. Org. Chem. 1985, 50, 805–810.
Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 26, 2263–2266.
SPh
CH3
CN
1. LDA (1 equiv)
CHO
CO2Et
OCH3
THF, –78 ºC
2. PhSSPh (1.1 equiv)
CO2Et
OCH3
1. KCN, NaHSO3
OH
OCH3
OCH3
87%
O
CN
2. SiO2, 50%
O
50% (2 steps)
O
O
Hauser, F. M.; Rhee, R. P.; Prasanna, S. Synthesis 1980, 72–74.
CH3
CN
CN
1. LDA, –78 ºC
O
O
O
CN
CN
• Kraus Annulation Substrates
O
CO2Et
OCH3
3. ClSO2NCO, 30%
1. NBS, (PhCO2)2
CCl4, 80 ºC
2. NaCN, EtOH
CO2Et
OCH3
CCl4, 80 ºC
O
OCH3 O
2. 155 ºC, 49%
80 ºC, 55%
O
2. CO2
1. NBS, (PhCO2)2
O
Kraus, G. A.; Cho, H.; Crowley, S.; Roth, B.; Sugimoto, H.; Prugh, S. J. Org. Chem. 1983, 48,
3439–3444.
Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 26, 2263–2266.
O
CHO
CONEt2
OCH3
CH3
CN
NaCN, PTSA
O
THF, H2O
0 ! 23 °C, 95%
Li, T.-T.; Wu, Y. L. J. Am. Chem. Soc. 1981, 103, 7007–7009.
OCH3 O
H
NEt2
CH3
MOMO
CN
O
CH3
1. TMSCN, CH2Cl2
KCN (cat), 18-crown-6
0 ! 23 °C
O
CH3
MOMO
O
2. AcOH, 23 ºC, 77%
Svenda, J.; Hill, N. ; Myers, A. G. Proc. Natl. Acad. Sci. 2011, 108, 6709–6714.
Magauer, T.; Smaltz, D. J.; Myers, A. G. Nat. Chem. 2013, 5, 886–893.
Fan Liu
15