Tải bản đầy đủ (.pdf) (11 trang)

29 cyclopropanation

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.3 MB, 11 trang )

Myers

Chem 115

Cyclopropanation

Reviews:

• Bonding Orbitals in Cyclopropane (Walsh Model):

Roy, M.-N.; Lindsay, V. N. G.; Charette, A. B. Stereoselective Synthesis: Reactions of Carbon–
Carbon Double Bonds (Science of Synthesis); de Vries, J. G., Ed.; Thieme: Stuttgart, 2011, Vol 1.;
731–817.
Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977–1050.
Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861–2903.
Li, A-H.; Dai, L. X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341–2372.
eS (")

• Applications of Cyclopropanes in Synthesis

eA (")

Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051–3060.
Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151–1196.
Gnad, F.; Reiser, O. Chem. Rev. 2003, 103, 1603–1624.

!

• Cyclopropane Biosynthesis

Thibodeaux, C. J.; Chang, W.-c.; Liu, H.-w. Chem. Rev. 2012, 112, 1681–1709.


de Meijere, A. Angew. Chem. Int. Ed. 1979, 18, 809–886.
General Strategies for Cyclopropanation:
Introduction

• via carbenoids

"MCH2X"
H
H

HH

H

H
H

H

H
H

H
H

• via carbenes generated by decomposition of diazo compounds

RCHN2
R


• Cyclopropanes are stable but highly strained compounds (ring strain ~29 kcal/mol).
• C–C bond angles = 60º (vs 109.5º for normal Csp3–Csp3 bonds).
• Substituents on cyclopropanes are eclipsed. H–C–H angle is ~120º. As a result, the C–H bonds
have higher s character compared to normal sp3 bonds.

• via Michael addition and ring closure

RCH–LG
EWG

EWG

LG

EWG
R

• Because of their inherent strain, the reactivity of cyclopropanes is more closely analogous to that of
alkenes than that of alkanes.

R

RCH2
EWG

LG

EWG

LG


EWG

R

Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977–1050.
James Mousseau, Fan Liu

1


Myers

Chem 115

Cyclopropanation

• Diastereoselective cyclopropanation is possible in the presence of directing groups:

Simmons-Smith Reaction –– Zinc Reagents in Cyclopropanation
• Original Report:

OH

OH
CH2I2, Zn(Cu)

H

CH2I2, Zn(Cu)


(±)

Et2O, 35 ºC
48%

Et2O, 35 ºC
63%

(±)

OCH3

H

CH3O

H

CH2I2, Zn(Cu)

H

Et2O, 35 ºC
~60%

(±)

(±)


H

H
Dauben, W. G.; Berezin, G. H. J. Am. Chem. Soc. 1963, 85, 468–472.

Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323–5324.

• Interestingly, excess carbenoid can reverse the directing effect of alcohols.

• Reaction Overview:

Zn
R1

"ZnCH2I"

R1
H

R2

OZnR'

OZnR'
H

OBn

OBn


OZnR'
H

I
CH2

H

R1

H
R2

R2

Butterfly transition state

OBn

H

Zinc Reagent

dr

yield

Zn(CH2I)2 (1 equiv)

>25:1


>95%

EtZnCH2I (9 equiv)

1:>25

>95%

Charette, A. B.; Marcoux, J. F. Synlett, 1995, 1197–1207.
• The reaction is proposed to proceed through a "butterfly" transition state.

• Directed cyclopropanation is also possible in acyclic systems:

Simmons, H. E. Org. React. 1973, 20, 1–133.
OH

OH

OH

• Zinc cyclopropanating reagents can be generated in various ways. Both Zn metal and ZnEt2 can be
used.

Et2Zn, CH2I2

CH3

CH3


CH3

CH2Cl2, –10 °C
97%

H

H
130

• Many zinc reagents for cyclopropanation have been developed:

:

1

Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966–1967.
• Diastereoselectrive cyclopropanation has been used in tandem asymmetric organozinc additions:

I
Simmons
and Smith

O

I

I

I Zn


Zn

Zn
I

H3C

Denmark

Furukawa

F3C

Zn
I
Shi

O
EtO P
EtO

Zn

1. HBEt2, PhCH3, 23 ºC
2. Et2Zn, i-PrCHO

I

Charette

Ph

General applicability

Highly reactive
carbenoid for
unreactive alkenes

Highly stable carbenoid

H3C

Ph

CH3
O

N
OH
H3C

OH

(4 mol%)

–78 ! –10 ºC

CH3
CH3


ZnEt2, CH2I2
CH2Cl2, 23 ºC

OH
CH3

Ph
H

CH3

75%, 99% ee
dr >20:1

Kim, H. Y.; Lurain, A. E.; Garcia-Garcia, P.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2005,
127, 13138–13139.
James Mousseau, Fan Liu

2


Myers

Chem 115

Cyclopropanation

• Asymmetric Simmons-Smith Reaction Using Chiral Auxiliaries

• Stoichiometric Promoter for Asymmetric Simmons-Smith Cyclopropanation


• Allylic alcohols:

• A chiral dioxaborolane auxiliary prepared from tetramethyltartramide and butylboronic acid has
been shown to be effective in the asymmetric cyclopropanation of allylic alcohols.
• A hydrogen peroxide work-up is employed to remove boron side-products.

OBn
O

BnO
BnO

Et2Zn, CH2I2

Ph

O

OBn

OH

O

BnO
BnO

toluene, –35 ! 0 ºC


A (1.1 equiv)

Ph

O

OH

OH

98%, dr >50:1

via

OBn
O

BnO
BnO

O

Me

O Zn
EtZn
C
H2I

BnO

BnO

+

>98%, 93% ee

then 30% aq H2O2

OBn

Ph

HO

OH

0 ! 23 ºC

1. Tf2O, C5H5N
2. DMF, H2O, C5H5N
160 ºC, 90%

Me

Et

H

Zn(CH2I)2, DME, CH2Cl2


O

O

via H C
3

O

O

N(CH3)2

(H3C)2N

CHO
O
B
n-Bu

O

O
Charette, A. B.; Côté, B.; Marcoux, J.-F. J. Am. Chem. Soc. 1991, 113, 8166–8167.

B

H
A


O
O

Zn

Ph H

O

N(CH3)2
N(CH3)2

I

• Allylic amines:
Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc. 1998, 120, 11943–11952.
Ph

OH

H3C

N
CH3

Et2Zn, CH2I2
Ph

CH2Cl2, 0 °C


Ph

OH

H3C

N
CH3

95%, dr = 98:2

• Allylic alcohols are cyclopropanated selectively:
Ph
CH3

OH

• ",#-Unsaturated carbonyls:

H

H3C
O

2.

H3C

CO2i-Pr


O

OH
i-PrO2C

O

CO2i-Pr

CO2i-Pr
OH

H
O

H

H3C

then 30% aq H2O2

OH

80%, 95% ee

Nicolaou, K. C.; Sasmal, P. K.; Rassais, G.; Reddy, M. V.; Altmann, K. H.; Wartmann, M.; O'Brate,
A.; Giannakakou, P. Angew. Chem. Int. Ed. 2003, 42, 3515–3520.
• The cyclopropanation of allenic alcohols affords spiropentane derivatives:

hexanes, –20 °C

Et

H3C

H3C

Et2Zn, CH2I2

C5H5NH•OTs, C6H6
80 ºC, 79%

pTSA, THF

CH3

Zn(CH2I)2, DME, CH2Cl2

H3C

Aggarwal, V. K.; Fang, G. Y.; Meek, G. Org. Lett. 2003, 5, 4417–4420.

1. (EtO)3CH, NH4NO3 (cat.)
EtOH, 23 ºC

ent-A (1.1 equiv)

CH3

H3C


H2O, 65 ºC
yield not provided

O
O

OH
C

CO2i-Pr
CO2i-Pr

Et

H

A (1.1 equiv)
Zn(CH2I)2, DME, CH2Cl2
–10 ! 23 ºC
then 10% aq NaOH

OH
MO
Et
Et

Et
H

H

Et
70%, 97% ee

90%, dr = 97:3
Mash, E. A.; Nelson, K. A. J. Am. Chem. Soc. 1985, 107, 8256–8258.
Mori, A.; Arai, I.; Yamamoto, H. Tetrahedron 1986, 42, 6447–6458.

Charette, A. B.; Jolicoeur, E.; Bydlinkski, G. A. S. Org. Lett. 2001, 3, 3293–3295
James Mousseau, Fan Liu

3


Myers

Chem 115

Cyclopropanation

• The dioxaborolane promoter can be used to prepare 1,2,3-trisubstituted cyclopropanes.

• Unfunctionalized alkenes can undergo asymmetric Simmons–Smith cyclopropanation in presence of
a valine/proline dipeptide.

• In the example shown, the intermediate borinate was used directly for Suzuki coupling:

• Selectivity is higher for trisubstituted alkenes than for disubstituted alkenes.
O

O


(H3C)2N
Ph

OH

1. Et2Zn
CH2Cl2, 0 ºC

Ph

OZnEt

2. A (1.2 equiv)

N(CH3)2
O

Ph

O

B

C (1.25 equiv)

Ph

O
n-Bu


ZnEt

H
Ph

H

O

n-Bu
B

B-Zn Exchange

O

4. Pd(PPh3)4
(5 mol%)

CH2Cl2, –78 ! –40 ºC

Ph

H3C

N
CH3
C


absolute stereochemistry
not reported

Long, J.; Yuan, Y.; Shi, Y. J. Am. Chem. Soc. 2003, 125, 13632–13633.
• Catalytic Enantioselective Simmons-Smith Cyclopropanation Reactions
• Chiral bis-sulfonamides have been used to direct asymmetric Simmons–Smith reactions of allylic
alcohols:

Ph

PhI, KOH
THF, 65 ºC

0 ºC, CH2Cl2
83%, 90% ee

CO2CH3

O

B
n-Bu
O
ZnEt

Ph

Et2Zn, CH2I2

BocHN


3. EtZnI•OEt2, CHI3

N(CH3)2
O

H

O

(H3C)2N
ZnI

O

Ph

OH

D (10 mol %)

59%, 92% ee, >20:1 dr

OH

Et2Zn, ZnI2, Zn(CH2I)2

NHSO2CH3

OH


CH2Cl2, 0 ºC
92%, 89% ee

Zimmer, L. E.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 15624–15626.

NHSO2CH3
D

• Homoallylic ethers can be cyclopropanated using a zinc phosphate, prepared in situ from a chiral
phosphoric acid:

OBn

B

B (1.2 equiv)
Et2Zn, CH2I2

OBn

CH2Cl2, 0 ºC

85%, 93% ee

Denmark, S. E.; O'Connor, S. P. J. Org. Chem. 1997, 62, 584–594.
• "Taddolates" can also be used:

E


via
Ar

Ar =

E (25 mol %)

Ar

O
O
P
O
OH

O
O
P
O
OZnCH2I

Ar

Ar

OH

Zn(CH2I)2, 4Å MS
CH2Cl2, 0 ºC
85%, 92% ee


OH

Et

Et

O

O
Ph

Ph
Ph

O

i-PrO

Ti

O

Ph

Oi-Pr

Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001, 123, 12168–12175.
Lacasse, M.-C.; Poulard, C. Charette, A. B. J. Am. Chem. Soc. 2005, 127, 12440–12441.


James Mousseau, Fan Liu

4


Myers

Chem 115

Cyclopropanation

• A bifunctional Al-complex is an effective cyclopropanation catalyst and is believed to bind both the
Zn and the allylic alcohol:
ligand (10 mol%)
Et2AlCl (10 mol%)

TBDPSO

OH

H3C

TBDPSO

I

TMS

CH3


CO2Et

1. LiTMP, HMPA
THF, toluene, –95 ºC
2.

ligand

TMS

CO2Et

O

O
NH

via

Te+

OH

Et2Zn, CH2I2
CH2Cl2, 23 ºC
99%, 90% ee

• Telluronium ylides can also be used:

81%, 97% ee


N

OH HO
Ph Ph

O
Zn N Al N
O
O Cl
ZnEt

Liao, W.-W.; Li, K. Tang, Y. J. Am. Chem. Soc. 2003, 125, 13030–13031.

• Camphor-derived sulfur ylides can be employed for stereoselective cyclopropanations of Michaelacceptor olefins:

Shitama, H.; Katsuki, T. Angew. Chem. Int. Ed. 2008, 47, 2450–2453.
Cyclopropanation via Michael Addition and Ring Closure –– Asymmetric Cyclopropanation
Through Chiral Ylides
• In an early report, optically enriched oxosulfonium F was prepared in 3 steps, which
stereoselectively cyclopropanates Michael-acceptors:

O
H3C

S

1. p-tolSO2N3, Cu
CH3OH, 65 ºC


O

p-tol 2. H SO
2
4

H3C

O
Ph

H

F, NaH
Ph

H3C

3. Me3OBF4
Na2CO3

S N
p-tol

DMSO, 23 ºC

O BF4–

CH3


H3C
CH3
Br
Ph
S
OH
acetone
H3C
–20 ºC, 92%

CH3

Ph

CH3
S
OH

CO2CH3

CO2Me

t-BuOK

Ph

THF, –78 ºC

Ph


71%

Ph

77%, 99% ee
dr > 99:1

S N(CH3)2
H3C
p-tol
F

O

H

H3C

CH3

Ph

Ph
H

94%, 35% ee


O BF4
H S N(CH3)2

Ph
p-tol
H

O

H3C

OH

Johnson, C. R.; Schroeck, C. W. J. Am. Chem. Soc. 1968, 90, 6852–6854.

H3C
Br

H3C

S
CH3
OH

CH3

Ph

Ph

acetone
–20 ºC, 92%


H3C

S
OH

CH2

COPh

COPh

t-BuOK
Ph

THF, –78 ºC

Ph

Ph
78%, 96% ee
dr > 99:1

Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W,; Li, K.; Tang, Y.; Wu, Y.-D.; Dai, L.-X. J. Am.
Chem. Soc. 2006, 128, 9730–9740.
James Mousseau, Fan Liu

5


Myers


Chem 115

Cyclopropanation

• Catalytic Enantioselective Ylide Cyclopropanations
• Cinchona alkaloids have been employed to generate chiral ammonium ylides, which
stereoselectively cyclopropanates Michael-acceptors:
O
Br +

Et2N

G (20 mol%)
Cs2CO3

O
Ph

• Chiral sulfoxonium intermediates can be generated in situ by trapping of a rhodium carbenoid:

Ph

O
Ph

Et2N

CH3CN, 80 ºC
94%, 97% ee


N

N

Ts

Rh2(OAc)4 (10 mol%)

O
+

O
CO2Et

H Na+

O

NR3
Cs2CO3

O
NR3Br–

Et2N

O

91% ee, dr = 88:12


"

O
Ph

Et2N

O

oC

catalyst J

Rh2(OAc)4
O

N

O

BnEt3N+Cl- (20 mol%)
1,4-dioxane, 40

CO2Et

Ph

J (20 mol%)


N

RhII

Ph

NR3+

Ph

Ph

H

R*
S

S

O
N

H

CH3

O

O
CO2Et


R*

CH3
J

OCH3
O
Cl

H (20 mol%)
Na2CO3, NaBr

O

O

N
H

O

OCH3
N

CH3CN, 80 ºC
79%, 95% ee

H


G: R = H
H: R = CH3

R

Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem. Int.
Ed. 2001, 40, 1433–1436.

• Asymmetric cyclopropanation through a chiral iminium intermediate:
Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J. Angew. Chem. Int. Ed. 2004,
43, 4641–4644.
Johansson, C. C. C.; Bremeyer, N.; Ley, S. V.; Owen, D. R.; Smith, S. C.; Gaunt, M. J. Angew.
Chem. Int. Ed. 2006, 45, 6024–6028.

N
H

• Lanthanum complexes were also found to be effective:

O
Li

O
O

OH
OH

1. La(O-i-Pr)3
THF, 0 ºC ! 23 ºC

2. MeLi, THF

*

0 ºC ! 23 ºC

O
H3C S CH
2
H3C

+

Ph

CH3
CH3

THF, toluene
4Å MS, –55 ºC
73%, 94% ee

La
O

H

H3C

CH3 O

S

Ph

H

CHCl3, –10 ºC
85%, 95% ee, dr = 30:1

O
Ph

n-Pr
H

O
H

O
Li

O
I

*

I (10 mol%)
NaI (10 mol%)

O


O

O
O

Li

n-Pr

*

+

CO2H
(20 mol%)

Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3240–3241.

O
Ph

CH3
CH3

Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129,
13410–13411.

David W. Lin, Fan Liu


6


Myers

Chem 115

Cyclopropanation

Asymmetric Cyclopropanation using Metal Carbenes
• Transition metals catalyze the cyclopropanation of electron-rich olefins via carbenoids formed from
electron-deficient diazo compounds.

• Since the initial report, extensive research has been done to develop other C2-symmetric Cu(I) and
Ru(II) oxazoline complexes.
various linker
groups
used here

• The catalytic cycle proceeds via a Fischer-type (electrophilic) metal carbene formed from diazo
precursors:

R1

various
groups
used here

R1


N2
R2

R3

R2

ML*

R2

R1

R3

MLn
N2
R1

R3

t-Bu

transition
state

R2

N


t-Bu
catalyst

• Many alkenes can be used, with styrenes and enol ethers being the most common.

electron-rich
alkene

Fischer-type (electrophilic)
metal carbene

O
N

H
H

H
MLn

O

• The reaction proceeds with retention of the olefin geometry:
O

• This methodology is most effective for three classes of diazo substrates:
R

• Diazo substrates with one electron-withdrawing group


R'

OR''

+

CO2R''
R'

catalyst

N2

R

R = aryl, alkyl, OR

• Diazo substrates with two electron-withdrawing groups
• Diazo substrates with one electron-withdrawing group and one electron-donating group

• Up to three stereocenters can be formed.
• Cu(I) and Ru(II) oxazoline complexes typically give trans-1,2-cyclopropanes selectively:

• Diazo Substrates with One Electron-Withdrawing Group
• The use of C2-symmetric Cu(I) oxazoline complexes for cyclopropanation was first reported by
Evans:
I (1 mol%)
CuOTf (1 mol%)

O

+

Ph

OEt
N2

t-BuO2C
F
Ph

Ph
+

CHCl3, 23 ºC
77%

CO2Et
99% ee

Ph

CO2Et

O

F

97% ee


+
Ph

trans:cis = 81:19

Cu
H

H3C

I (0.12 mol%)
CuOTf (0.1 mol%)

O
+

OEt
N2

CHCl3, 0 ºC
91%, >99% ee

H3C

CO2Et

H3C CH3
O

H3C


O
N

N

t-Bu

3

O CH3

F

F

H

Ph
93% ee
trans-cyclopropane
(major)

t-Bu
Cu

H

N
N


t-Bu
disfavored

t-Bu

CO2t-Bu

favored

56%
dr = 81:19
t-BuO2C
Ph

CH3

N
N

O CH

t-Bu

CuOTf•I
Ot-Bu

N2

t-Bu


O CH

CO2t-Bu
3

O CH3

Ph

H

F
89% ee
cis-cyclopropane
(minor)

I
Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726–728.

Haufe, G.; Rosen, T. C.; Meyer, O. G. J.; Fröhlich, R.; Rissanen, K. J. Fluorine Chem. 2002, 114,
189–198.
David W. Lin, Fan Liu

7


Myers
• Examples of Cu(I)- and Ru(II)-catalyzed enantioselective cyclopropanations:


I (2.5 mol%)
CuOTf (2 mol%)
PhNHNH2 (2 mol%)

O
O

Chem 115

Cyclopropanation

OEt

CO2CH3

N2

• Chiral Ir(III)-salen complexes afford cis-1,2-cyclopropanes with high enantioselectivities:
O

H

EtO2C

CH2Cl2, 0 ! 20 ºC
91% ee (crude)

CO2Me

O


H

Ot-Bu
N2
III (1 mol%)

p-CF3C6H4

THF, –78 ºC
73%, 97% ee
dr = 97:3

after recrystallization:
53%, >99% ee

N
F3C

N
Ir

CO2t-Bu

O

O
X
Ph Ph


O
Bưhm, C.; Reiser, O. Org. Lett. 2001, 3, 1315–1318.
• Intramolecular reactions can also proceed with high enantioselectivities:

CH3

O
O

I (0.12 mol%)
[Cu(MeCN)4]PF6 (1 mol%)

CH3

O
O

CH2Cl2, 23 ºC
82%, 90% ee

N2

Ot-Bu

BzO

H

F3C


Ot-Bu
N2

CH2Cl2, 0 ! 20 ºC
85%, 99% ee
dr = 96:4

CO2t-Bu

IV (1 mol%)
DMAP (50 mol%)
EtO2C

II (0.5 mol%)

III, X = p-Tol

BzO

• Co(II)-porphyrin complexes can cyclopropanate electron-deficient alkenes enantioselectively:

Doyle, M. P.; Peterson, C. S.; Parker Jr., D. L. Angew. Chem. Int. Ed. 1996, 35, 1334–1336..

O

THF, –78 ºC
87%, 94% ee
dr = 96:4

Suematsu, H.; Kanchiku, S.; Uchida, T.; Katsuki, T. J. Am. Chem. Soc. 2008, 130, 10327–10337.


O

O

N2

III (1 mol%)

CO2t-Bu

PhCH3, 23 ºC
92%, 91% ee
dr = 99:1
O

F3C

H3C
EtO2C

CO2t-Bu

O
Ph

H2N

O
N


IV (1 mol%)
DMAP (50 mol%)

Ru

Ph H2O Cl

N
CO Ph

Ph

O

PhCH3, 23 ºC
77%, 97% ee
dr = 99:1

O
NH

N

N

HN

Co


Ot-Bu

CH3

CH3

3,5-di-t-BuPh
O

NH

N2
H3C

H3C

CH3

N

N

HN
O

O
3,5-di-t-BuPh
CO2t-Bu

H2N


H3C

CH3

IV

H3C

CH3

O

II

Ito, J.-i.; Ujiie, S.; Nishiyama, H., Chem.–Eur. J. 2010, 16, 4986–4990.

Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007, 129, 12074–12075.
David W. Lin

8


Myers

• At low temperatures, rhodium(III) catalysts are compatible with higher !-alkyl-!-diazoesters, which
otherwise often undergo undesired "-hydride elimination upon metal carbene formation:

O
Ph


Chem 115

Cyclopropanation

n-Bu

EtO

Rh2[(S)-PTTL]4
(0.5 mol%)
hexane, –78

N2

• !-nitro-!-diazo aryl ketones give cis cyclopropanes selectively:

O
EtO2C

oC

93%, 96% ee
dr = 99:1 (trans:cis)

n-Bu

O
O Rh O


Ph

Cl

O2N

Ph3C

O Rh O

N2

N

OCH3

O

Rh2[(S)-TCPTTL]4
(0.1 mol%)
Et2O, –50

t-Bu

Cl

O
O2N

Cl


O

oC

OCH3 Rh O

68%, 94% ee
dr = 96:4

3
Rh2[(S)-PTTL]3TPA

Cl

N

Rh O

O

t-Bu

CF3

4

CF3

Rh2[(S)-TCPTTL]4


Boruta, D. T.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. Chem. Sci. 2012, 3, 1589–1593.
• Diazo Substrates with Two Electron-Withdrawing Groups

Lindsay, V. N. G.; Lin, W.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 16383–16385.

• While symmetrical diazomalonates give poor selectivities, unsymmetrical diazomalonates are
excellent substrates:

O

O

N

OCH3
N2

Ph

Rh2[(S)-NTTL]4
(1 mol %)

O
N

DCE, 23 ºC

CO2CH3
Ph


79%, 96% ee
dr > 30:1 (cis:trans)

O
Rh O

H3CO2C

Ph

R
N2

Ph

CH2Cl2, 23 ºC

O
R

NO2

4

H3C CH3
H3CO2C

Ph


in situ generated
carbene precursor

Ph
trans
(favored for
R = OEt, n-Bu)

Charette, A. B.; Wurz, R. P.; Ollevier, T. Helv. Chim. Acta 2002, 85, 4468–4484.

O

O
N

N

Ph

Ph

82%, 91% ee
dr = 94:6 (trans:cis)

Cu+
SbF6

Ph



V

• Alternatively, !-nitro-!-diazo acetates give cis cyclopropanes with cobalt(II)-porphyrin catalysts:

O

O
NO2

NO2

Moreau, B.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 18014–18015.

• For !-nitro-!-diazo carbonyls, the diastereoselectivity is sensitive to the nature of the carbonyl
substituent:

Rh2(OAc)4

V (2 mol%)
Na2CO3
C6H6, 23 ºC

t-Bu

Marcoux, D.; Charette, A. B. Angew. Chem. Int. Ed. 2008, 47, 10155–10158.

NO2

O


H3CO2C
I

O
Rh O

I

NO2

N

Rh2[(S)-NTTL]4

O

• !-nitro-!-diazo esters give trans cyclopropanes selectively. In the example below, the oxidant
iodosobenzene can be used to form the carbene precursor from !-nitro esters in situ:

R

NO2

Ph
cis
(favored for
R = Ph, t-Bu)

NO2
O

O2N

OEt

IV (5 mol%)
DMAP (50 mol%)
hexanes, 0 # 23 ºC
81%, 95% ee
dr = 93:7

O2N

OEt

NO2

N2
Zhu, S.; Perman, J. A.; Zhang, X. P. Angew. Chem. Int. Ed. 2008, 47, 8460–8463.

David W. Lin

9


Myers

Chem 115

Cyclopropanation


• Diazo Substrates with One Electron-Withdrawing Group and One Electron-Donating Group
• Metal carbenes with adjacent electron-donating and electron-withdrawing groups ("push-pull"
systems) are relatively stable and reactive.

• A wide range of electron-withdrawing groups within the diazo substrate are tolerated:
O
H3CO P
H3CO

• Rhodium(II) complexes using chiral ligands derived from proline have often been employed:

Rh2[(S)-PTAD]4
(2 mol%)

Ph
N2

Ph

t-Bu

CO2CH3
N2

Rh2[(S)-TBSP]4
(1 mol%)

Ph
Ph


Ph

83%, 87% ee

Rh O

F3C

CO2CH3

Ph

N

O

Rh O

4

Rh2[(S)-PTAD]4
(1 mol%)

Ph
N2

Ph

Rh2[(S)-TBSP]4
Rh2[(S)-TBSP]4

(1 mol%)

H

O
Rh O

Rh2[(S)-PTAD]4

O S O
Rh O
N

Ph

Ph

Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett. 2006, 8, 3437–3440.

CO2CH3

pentane, 23 ºC

PhCF3, 23 ºC
94%, >98% ee
dr > 20:1

O
H3CO P
H3CO


CO2CH3

F3C

Ph

H

Ph

2,2-dimethylbutane
50 ºC, 86%
99% ee, dr > 30:1

4

Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Org. Lett. 2007, 9, 2625–2628.

pentane, 23 ºC

N2
OCH3

82%, 88% ee
dr = 98 : 2

H
NC


H3CO

N2
Doyle, M. P.; Zhou, Q.-L.; Charnsangavej, C.; Longoria, M. A.; McKervey, M. A.; GarcÌa, C. F.
Tetrahedron Lett. 1996, 37, 4129–4132.
Davies, H. M. L.; Bruzinski, P. R.; Fall, M. J. Tetrahedron Lett. 1996, 37, 4133–4136.
• Styrenes can also be considered as electron-donating groups on the diazo substrate:

CO2Me
N2

Et

CO2Me

pentane, 23 ºC
65%, >95% ee

Et

Ph

toluene, –78 ºC
86%, 90% ee
dr = 97:3

NC

Ph


H

Ph

Denton, J. R.; Cheng, K.; Davies, H. M. L. Chem. Commun. 2008, 1238–1240.
• N-sulfonyl-1,2,3-triazoles serve as alternatives to diazo compounds as carbene precursors:

H3CO2S N N N
Rh2[(S)-TBSP]4
(1 mol%)

Rh2[(S)-PTAD]4
(2 mol%)

Ph

H
Ph

Ph

1. Rh2[(S)-NTTL]4
(0.5 mol%)
DCE, 65 ºC
2. K2CO3, MeOH

H

[Rh]
H3CO2S


N

O
H

67%, 98% ee
dr > 20:1

O
Rh O

N

Rh O

t-Bu

O

Rh2[(S)-NTTL]4

4

R
H

Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996,
118, 6897–6907.


Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. J. Am. Chem. Soc. 2009,
131, 18034.
David W. Lin
Grimster, N.; Zhang, L.; Fokin, V. V. J. Am. Chem. Soc. 2010, 132, 2510.

10


Myers

Chem 115

Cyclopropanation

Selected Transformations of Cyclopropanes

Selected Industrial Examples

• Cyclopropanes can undergo direct C-H functionalization enantioselectively by Pd(II) complexes
with chiral amino acid ligands.

• A copper-catalyzed diazo decomposition led to the asymmetric cyclopropanation of 2,5-dimethyl2,4-hexadiene in good yield and high enantioselectivities:

• A special directing group is required on the cyclopropane substrate to coordinate the Pd(II)
complex and direct insertion into the adjacent cis C-H bond.

H3C

• The directing group is readily available and can be hydrolyzed to give the corresponding acid:


H3C

F
OBn O

F
N
H

F

CuCl (0.2 mol%)
Ligand (0.22 mol%)
Ph3CPF6 (0.22 mol%)
EtOAc, 0 ºC, 92%

Ot-Bu
n-Bu
F
OBn O

Ag2CO3, NaHCO3
t-Amyl-OH, 40 ºC
62%, 92% ee

F

CH3
(3.86 g)
O


F
CH3
O
CH3
Ph B
CH3
O
CH3
Pd(OAc)2 (10 mol%)
CN
ligand (20 mol%)

CH3

F
N
H
Ph

CN

O
Cl3C
n-Bu

O
N
H


F
CO2H

N2

Ot-Bu
H3C
H3C H3C

H3C
H3C

F

O

O
N

N

Ot-Bu
H3C

88:12

CH3
71% ee

chrysanthemic acid

t-butyl ester
(a key intermediate
to pyrethroid
insecticides)

H3C CH3

ligand

O

H3C

CH3

96% ee

(1.41 g)

Ligand

F

H3C

O

CH3
CH3


Wasa, Y.; Engle, K. M.; Lin, D. W.; Yoo, E.-J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598–19601.
Itagaki, M.; Masumoto, K.; Suenobu, K.; Yamamoto, Y. Org. Proc. Res. Dev. 2006, 10, 245–250.

• Cyclopropanes can undergo vinylcyclopropane-cyclopentene rearrangements:

• Cinchona alkaloids were applied to the synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic
acid ethyl esters in good yield and modest ee's.
H

TBSO
H3C

N2

O

t-Bu
N
O
Cu
O
N
t-Bu
toluene, 110 ºC, 84%

H
O
TBSO
H3C


O



H

O

O

1. Br2, CCl4
Et2O, 0 ºC
2. DBU, DMF
50 ºC, 48%

TBSO
H3C


O




O

Ph

N


OEt

TBSO
H3C

Corey, E. J.; Myers, A. G. J. Am. Chem. Soc. 1985, 107, 5574–5576.
Corey, E. J.; Myers, A. G. Tetrahedron Lett. 1984, 25, 3559–3562.

H

O

O

Br
(16.74 g)

Ph

N

CO2Et

H2O, 0 ºC
Crude yield:
A key intermediate in the
78%, 77% ee
preparation of many
After Chromatography:
hepatitis C inhibitors

55%, >99% ee

Catalyst
Br–
HO



Cat (3 mol %)
NaOH, toluene

Br

(11.3 g)

Et2AlCl, CH2Cl2
0 ºC, 80%

+

N

N
CF3
F3C

Belyk, K. M.; Xiang, B.; Bulger, P. G.; Leonard, W. R.; Balsells, J.; Yin, J.; chen, C.-y. Org. Proc.
Res. Dev. 2010, 14, 692–700.
James Mousseau, David W. Lin, Fan Liu


11



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×