Myers
Chem 115
Protective Groups – Silicon-Based Protection of the Hydroxyl Group
• In general, the stability of silyl ethers towards acidic media increases as indicated:
General Reference:
4th ed. John Wiley & Sons:
Greene, T. W.; Wuts, P. G. M. Protective Groups In Organic Synthesis, 3rd
TMS (1) < TES (64) < TBS (20,000) < TIPS (700,000) < TBDPS (5,000,000)
• In general, stability towards basic media increases in the following order:
York, 1991.
New Jersey,
2007.
TMS (1) < TES (10-100) < TBS ~ TBDPS (20,000) < TIPS (100,000)
Important Silyl Ether Protective Groups:
CH3
RO Si CH3
CH3
Et
RO Si Et
Et
Trimethylsilyl (TMS)
Triethylsilyl (TES)
CH3
RO Si i-Pr
CH3
Dimethylisopropylsilyl
Isopropyldimethylsilyl (IPDMS)
Greene, T. W.; Wuts, P. G. M. Protective Groups In Organic Synthesis, 3rd ed.
John Wiley & Sons: New York, 1991.
Half Life
Half Life
Silyl Ether
(5% NaOH–95% MeOH)
(1% HCl–MeOH, 25 °C)
n-C6H13OTMS
1 min
1 min
n-C6H13OSi-i-Bu(CH3)2
2.5 min
1 min
Stable for 24 h
1 min
1 min
14 min
n-C6H13OTIPS
Stable for 24 h
55 min
n-C6H13OTBDPS
Stable for 24 h
225 min
n-C6H13OTBS
n-C6H13OSiCH3Ph2
CH3
RO Si t-Bu
CH3
Et
RO Si i-Pr
Et
Diethylisopropylsilyl (DEIPS)
t-Butyldimethylsilyl (TBS)
Ph
RO Si t-Bu
Ph
t-Butyldiphenylsilyl (TBDPS)
Davies, J. S.; Higginbotham, L. C. L.; Tremeer, E. J.; Brown, C.; Treadgold, J.
Chem. Soc., Perkin Trans . 1 1992, 3043.
• A study comparing alkoxysilyl vs. trialkylsilyl groups has also been done:
i-Pr
RO Si i-Pr
i-Pr
Triisopropylsilyl (TIPS)
R
R
i-Pr
O Si i-Pr
O
O Si i-Pr
i-Pr
R
O t-Bu
Si
O t-Bu
R
Di-t-butylsilylene (DTBS)
(DTBS)
Tetraisopropyldisilylene (TIPDS)
Tetraisopropyldisiloxanylidene
(TIPDS)Di-t-butyldimethylsilylene
General methods for the formation of silyl ethers:
ROH
R'3SiCl
Half Life
Bu4N+F– (0.06 M, 6 equiv)
Half Life
HClO4 (0.01 M)
n-C12H25OTBS
140 h
1.4 h
n-C12H25OTBDPS
375 h
> 200 h
n-C12H25OSiPh2(Oi-Pr)
<0.03 h
0.7 h
n-C12H25OSiPh2(Ot-Bu)
5.8 h
17.5 h
n-C12H25OPh(t-Bu)(OCH
OSiPh(t-Bu)(OCH
3) 3 )
22 h
200h
Silyl Ether
Gillard, J.W.; Fortin, R.; Morton, H. E.; Yoakim, C.; Quesnell, C. A.; Daignault, S.;
Guindon, Y. J. Org. Chem. 1988, 53, 2602.
ROSiR'3
imidazole, DMF
• Silyl groups are typically deprotected with a source of fluoride ion. The Si–F bond stength is
about 30 kcal/mol stronger than the Si–O bond.
Fluoride sources:
Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
ROH
R'3SiOTf
ROSiR'3
2,6-lutidine,
2,6 lutidine, CH2Cl2
Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455.
Tetrabutylammonium fluoride, Bu4N+F– (TBAF)
Pyridine•(HF)x
Triethylamine trihydrofluoride, Et3N•3HF
Hydrofluoric acid
Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF)
Ammonium fluoride, H4N+F–
P. Hogan
1
• Monosilylation of symmetrical diols is possible, and useful.
NaH, TBSCl, THF
OH
HO
n
• Selective
Selective
deprotection
silyl
ethers
also
important,
and
also
subject
deprotection
ofof
silyl
ethers
is is
also
important,
and
is is
also
subject
toto
empirical
empirical determination.
determination.
OH
TBSO
n
75-97%
n = 2-6,10
McDougal, P.G.; Rico, J.G.; Oh, Y.; Condon, B. D. J. Org. Chem. 1986, 51, 3388.
HO
TBDPSCl, i-Pr2NEt, DMF, 23 °C
OH
n
TBDPSO
H 3C
CH 3
TBSO
TBSO
OH
75-86%
TESO
TESO
n
CH
CH33
O
n = 2,3,5,7,9
CH
3OBOM
CH
3 OBOM
H
O
AcO
O
Hu, L.; Liu, B.; Yu, C. Tetrahedron Lett. 2000, 41, 4281.
CH3
CH3
BuLi, THF; TBSCl
OHOH
OTBS OTBS
HO
HOHO
HO
88%
99%
CH3
CH3
Roush, W. R.; Gillis, H. R.; Essenfeld, A. P. J. Org. Chem. 1983,
1984 49, 4674.
H33C
H
CH3
N
OH
CH3
O
N
OTES
O
O
H
O
H
CH2Cl2, –78 °C
97%
H
H3C
CH2
HO
O
Ph
OH
H3C
H
H
O
N
O
H
H
O
O
H
H
CH3
O
CH3
O
H
N
OH
OH H
O
O
H
H
O
H
H
O
O
CH 2
O
OTES
OCH3
H
CH2
O
O
CH33
OH
CH3
OH
H
BzOAcO
BzO
O
Holton, R. A., et al. J. Am. Chem. Soc., 1994, 116, 1599.
Cl2CHCO2H
AcO
H
HO
CH3
Taxol
Taxol
OTIPS
N
O H3C
HO
H
OH
H
H
O
AcO
O
N
H
CH3
N
OTES
O
O
O
O
AcO
CH3
O
OH • TESCl/imidazole and
H
• TESCl/imidazole
TESOTf,
2,6-lutidine and
both
TESOTf,
2,6-lutidine
both
gave
the bis-silylated
product.
gave the bis-silylated product.
OCH3
O
H
H
O
CH
3OBOM
CH
3 OBOM
CH
CH33
0 °C, 11 h, quant.
O
O
TESCl, 2,6-lutidine
CH3
TBSO
TBSO
pyr•HF, CH3CN
• Selective protection of alcohols is of great importance in synthesis. Conditions often must be
determined empirically.
OTIPS
O
H
H
O
HO
HO
H3C
TBSO
H
OAc
O
O
HO
OTBS
AcO
90%
OAc
TBSO
H
CH3
OAc
O
O
HO
OH
OAc
CH3
CH3
O
O
OH
HO2C
O
HO2C
O
CO H
HO 2
OAc
CH3
Zaragozic acid
CH3
Br
Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1995, 117, 8106.
OCH3
OCH3
Phorboxazole B
Evans, D. A.; Fitch, D. M. Angew. Chem., Int. Ed. Engl. 2000, 39, 2536.
• Selective deprotections in organic synthesis have been reviewed: Nelson, T. D.;
Crouch, R. D. Synthesis 1996, 1065.
P. Hogan
2
Protective Groups – Protection of Hydroxyl Groups, Esters, and Carbonates
Myers
Esters and Carbonates
General methods used to form esters and carbonates:
O
O
RO
O
RO
O
Dichloroacetate
O
F
O
ROH
R'
O
O
pyr, DMAP
R'
O
RO
O
ROH
Benzoate (Bz)
Pivaloate (Piv)
Cl
O
pyr
OR'
RO
R
p-Methoxybenzoate
N
O
O
R'
RO
OCH3
Trifluoroacetate (TFA)
R'
RO
O
RO
CH3
H3C CH3
F F
R'
Cl
Trichloroacetate
O
RO
O
pyr, DMAP
Cl
Cl Cl
Cl
RO
ROH
RO
Cl
Cl
Chloroacetate
O
O
RO
CH3
Acetate (Ac)
Chem 115
OR'
O
X–
N
DMAP = 4-Dimethylaminopyridine:
RO
RO
O
O
O
H3C
RO
RO
N
CH3
O
9-(Fluorenylmethyl) Carbonate
(Fmoc)
RO
RO
O
Cl
Cl Cl
Allyl Carbonate
(Alloc)
O
O
RO
O
O
Si(CH3)3
2,2,2-Trichloroethyl Carbonate
2-(Trimethylsilyl)ethyl Carbonate
(Troc)
(Teoc)
• In general, the susceptibility of esters to base-catalyzed hydrolysis increases with the
acidity of the product acid.
O
RO
O
CH3
CH3
CH3
Benzyl Carbonate t-Butyl Carbonate
(Cbz)
DMAP is used to accelerate reactions between nucleophiles and activated esters. Neises,
B.; Steglich, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 522.
(Boc)
O
O
H3C
H3C
<
OCH3
CH3
O
OCH3
O
N CH3
OCH3
OCH3
O
O
<
H3C
<
<
CH3O
S
RO
H3C
CH3
• Proposed intermediate
Br
Methyl Carbonate
N
O
OCH3
p-Bromobenzoate
H3C
Cl
<
OCH3
Cl
Cl
O
OCH3
Cl
<
F
F
OCH3
F
Dimethylthiocarbamate (DMTC)
P. Hogan/Seth B. Herzon
3
Acetate Esters:
• Good selectivity can often be achieved in the selective deprotection of different esters.
• Several methods for forming and cleaving acetate esters have been developed. Lipases can often
be used for the enantioselective hydrolysis of acetate esters. The enantioselective hydrolysis of
meso diesters is an important synthetic transformation and racemic esters have been kinetically
resolved using lipases.
OAc
OH
H 3C
H3C
O
Acetyl cholinesterase
PCC
O
H3 C
H3C
O
O
O
O
O
94%, 99% ee
OAc
OAc
OAc
O
HO
OH
O
O
Deardorff, D. R.; Matthews, A. J.; McMeekin, D. S.; Craney, C. L. Tetrahedron Lett. 1986,
27, 1255.
• Lipases can also be effective for deprotection under very mild conditions, as in the case shown
below, where conventional methods were unsuccessful.
Cl
O
O
71%
OH
O
CH3O
O
OH
CH3
CH3
O
O
OAc
O
n-PrNH2
O
CH3O
HO
Cl
O
CH3
CH3
Lipase MY
0.1 M pH 7.2 buffer
Cl
O
O
OH
O
28 °C, 4 days
CH3
CH3
O
OH
O
O
O
O
Sakaki, J.; Sakoda, H.; Sugita, Y.; Sato, M.; Kaneto, C. Tetrahedron: Asymmetry, 1991, 2, 343.
CH3
O
OCH3
• A potentially general method for selectively acylating the primary hydroxyl group of a 1,2-diol
makes use
use of
of stannylene
stannylene acetals
acetals as
as intermediates:
intermediates:
makes
Bu2SnO,
HO
OBn
HO
toluene, 100 °C
CH3 N
AcCl,
O
AcO
OBn
O
Bu Sn
Bu
CH2Cl2, 0 °C
OBn
HO
CH3
O
HO
H
OH
Neocarzinostatin Chromophore
Myers, A. G.; Liang, J.; Hammond, M.; Wu, Y.; Kuo, E. Y. J. Am. Chem. Soc. 1998, 120,
5319.
Hanessian, S.;
1985,
41,41,
643.
Review: Hannessian,
S.;David,
David,S.S.Tetrahedron
Tetrahedron,
1985,
643.
P. Hogan
4
• When one protective group is stable to conditions that cleave another and the converse is also true,
these groups are often said to bear an orthogonal relationship. This concept is illustrated well in the
context of carbonates (and carbamates).
Allyl Carbonate:
O
Summary of methods for deprotecting carbonates:
Pd2(dba)3, dppe, Et2NH, THF
RO
ROH
O
Methyl Carbonate:
O
K2CO3, MeOH
RO
Genet, J.P.; Blart E.; Savignac, M.; Lemeune, S.; Lemaire-Audoire, S.; Bernard, J. Synlett 1993,
680.
ROH
OCH3
2-(Trimethylsilyl)ethyl Carbonate:
Meyers, A. I.; Tomioka, K.; Roland, D. M.; Comins, D. Tetrahedron Lett. 1978, 19, 1375.
O
TBAF, THF
RO
Si(CH3)3
• The pKa of fluorene is ≈ 10.3
O
RO
Et3N, pyr
O
ROH
O
9-Fluorenylmethyl Carbonate:
H
ROH
Gioeli, C.; Balgobin, S.; Josephson, S.; Chattopadhyaya, J. B. Tetrahedron Lett. 1981, 22, 969.
H
fluorene =
Benzyl Carbonate:
O
H2, Pd–C, EtOH
RO
ROH
O
Chattopadhyaya, J. B.; Gioeli, C. J. Chem. Soc., Chem. Comm. 1982, 672.
Trichloroethyl Carbonate:
Daubert, B. F.; King, G. C. J. Am. Chem. Soc. 1939, 61, 3328.
O
Zn, AcOH
RO
Dimethylthiocarbamate (DMTC):
ROH
O
S
Cl
Cl Cl
RO
N CH3
H3C
Windholz, T. B.; Johnston, D. B. R. Tetrahedron Lett. 1988, 29, 2227.
NaIO4 or
ROH
H2O2, NaOH
• The DMTC group is stable to a variety of reagents and reaction conditions (PCC oxidations,
Swern oxidations, chromium reagents, Grignard and alkyllithium reagents, phosphorous
ylides, LAH, HF, TBAF, and borane).
• The protecting group is introduced using thiocarbonyldiimidazole followed by treatment with
dimethylamine, or by reaction with commercially available ClCSN(CH3)2.
Barma, D. K.; Bandyopadhyay, A.; Capdevilla, J. H.; Falck, J. R. Org. Lett. 2003, 5, 4755.
P. Hogan/Seth B. Herzon
5
Myers
Cleavage of acetal protective groups:
Acetals as Protective Groups:
RO
Chem 115
Protective Groups – Protection of Hydroxyl Groups, Acetals
RO
OCH3
RO
O
Methoxymethyl Ether
Benzyloxymethyl Ether
(MOM)
(BOM)
O
CCl3
Methoxymethyl Ethers:
RO
2,2,2-Trichloroethoxymethyl Ether
ROH
OCH3
1. Conc. HCl, MeOH. Weinreb, S.; Auerbach, J. J. Chem. Soc., Chem. Comm. 1974, 889.
RO
OCH3
O
RO
RO
SCH3
O
OCH3
2-Methoxyethoxymethyl Ether
Methylthiomethyl Ether
p-Methoxybenzyloxymethyl
p-Methoxybenzyl EtherEther
(MEM)
(MTM)
(PMBM)
RO
O
H 3C
CH3
Si
CH3
O
2. Bromocatechol borane. This reagent cleaves a number of protective groups in
approximately the following order: MOMOR ʜ MEMOR > t-BuO2CNHR > BnO2CNHR ʜ
t-BuOR > BnOR > allylOR > t-BuO2CR ʜ 2° alkylOR > BnO2CR > 1° alkylOR >>
alkylO2CR. Boeckman Jr., R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411.
3. LiBF4, CH3CN, H2O. Ireland, R. E.; Varney, M. D. J. Org. Chem. 1986, 51, 635.
Benzyloxymethyl Ethers:
OR
2-(Trimethylsilyl)ethoxymethyl Ether
Tetrahydropyranyl Ether
(SEM)
(THP)
RO
O
ROH
1. Na, NH3. Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 6260.
General methods for forming acyclic, mixed acetals:
ROH
R'OCH2X
2. H2, Pd–C. D. Tanner, D.; Somfai, P. Tetrahedron 1987, 43, 4395.
3. Dowex 50W–X8, acidic ion exchange resin. Roush, W. R.; Michaelidies, M. R.; Tai, D. F.;
Chong, W. K. M. J. Am. Chem. Soc. 1987, 109, 7575.
Base,
Solvent
RO
OR'
Base-solvent combinations are often diisopropylethylamine-CH2Cl2, NaH-THF, or NaH-DMF.
Sometimes a source of iodide ion is added to enhance the reactivity of the alkylating reagent. Typical
sources include Bu4N+F
LiI,or
orNaI.
NaI.
I––, ,LiI,
4-Methoxybenzyloxymethyl Ether:
RO
General methods for introducing 2-tetrahydropyranyl ethers:
OCH3
TsOH
ROH
O
or
PPTS
ROH
O
1. DDQ, H2O. Kozikowski, A. P.; Wu, J.-P. Tetrahedron Lett. 1987, 28, 5125.
O
OR
PPTS = Pyridinium
Pryidinium p-toluenesulfonate
Grieco, P. A.; Yoshikoshi, A.; Miyashita, M. J. Org. Chem. 1977, 42, 3772, and references
cited therein.
P. Hogan
6
2,2,2-Trichloroethoxymethyl Ether:
RO
O
CCl3
Tetrahydropyranyl Ether:
ROH
ROH
1. Zn–Cu or Zn–Ag, MeOH. Jacobson, R. M.; Clader, J. W. Synth. Commun. 1979, 9, 57.
O
OR
T. J.
2. 6% Na(Hg), MeOH, THF. Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T.J.
J. Am. Chem. Soc. 1990, 112, 7001.
1. PPTS, EtOH, 55 °C. Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem., 1977, 44, 1438.
2. TsOH, MeOH, 25 °C. Corey, E. J.; Niwa, H.; Knolle, J. J. Am. Chem. Soc. 1978, 100, 1942.
2-Methoxyethoxymethyl Ether:
RO
O
OCH3
ROH
1. ZnBr2, CH2Cl2. Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 809.
Methylthiomethyl Ether:
RO
SCH3
ROH
2. Bromocatechol borane. Refer to the section on MOM ethers.
3. PPTS, t-BuOH, heat. Monti, H.; Leandri, G.; Klos-Ringuet, M.; Corriol, C. Synth. Comm.
1983, 13, 1021.
1. HgCl2, CH3CN, H2O. Corey, E. J.; Bock, M. G. Tetrahedron Lett. 1976, 17, 3269.
2. AgNO3, THF, H2O, 2,6-lutidine. Corey, E. J.; Bock, M. G. Tetrahedron Lett. 1976, 17, 3269.
3. MgBr2, n-BuSH, Et2O. Kim, S.; Kee, I. S.; Park, Y. H.; Park, J. H. Synlett, 1992, 183.
2-(Trimethylsilyl)ethoxymethyl Ether:
RO
O
H 3C
CH3
Si
CH3
ROH
1. n-Bu4N+F–, THF. Lipshutz, B. H.; Pegram, J. J. Tetrahedron Lett. 1980, 21, 3343.
2. TFA, CH2Cl2. Jansson, K.; Frejd, J.; Kihlberg, J.; Magnusson, G. Tetrahedron Lett. 1988,
29, 361.
P.Hogan
7
Myers
Chem 115
Protective Groups – Protection of Hydroxyl Groups, Ethers
Formation of trityl ethers:
Ethers as Protective Groups:
HO
TrO
O
HO
RO
OCH3
OH
O
Ph3CCl, DMAP
DMF, 88%
HO
OH
RO
OCH3
OH
OH
Chaudhary, S. K.; Hernandez, O. Tetrahedron Lett. 1979, 19, 95. In general, selective
protection of primary alcohols can be achieved.
Allyl Ether
Trityl Ether
1. Amberlyst 15-H, MeOH. Malanga, C. Chem. Ind. 1987, 856.
RO
RO
Cleavage of trityl ethers:
2. CF3CO2H, t-BuOH. MacCross, M.; Cameron, D. J. Carbohydr. Res. 1978, 60, 206.
OCH3
Benzyl Ether
Formation of benzyl ethers:
p-Methoxybenzyl Ether
RO
ROH
R'
allyl ether formation:
Allyl
R' = H or OCH3
ROH
RO
1. NaH, allyl bromide, benzene. Corey, E. J.; Suggs, W. J.; J. Org. Chem. 1973, 38, 3224.
2. CH2=CHCH2OC(=NH)CCl3, H+. This procedure is useful for base-sensitive substrates.
Wessel, H.-P.; Iverson, T.; Bundle, D. R. J. Chem. Soc., Perkin Trans. 1 1985, 2247.
1. NaH, benzyl bromide, THF.
THF. Czernecki,
Czernecki,S.;
S.;Georgoulis,
Georgoulis,C.;
C.;Provelenghiou,
Provelenghiou,C.
C.
Tetrahedron
Lett. 1976,
1976,17,
Tetrahedron Lett.
17, 3535.
Theseare
areuseful
usefulconditions
conditionsfor
forbase-sensitive
base-sensitive
2. p-CH3OC6H4CH2OC(=NH)CCl3, H+. These
substrates.
Yonemitsu, O.
O. Tetrahedron
TetrahedronLett.
Lett.1988,
1988,29,
29,4139.
4139.Similar
Similar
substrates. Horita, K.; Abe, R.; Yonemitsu,
conditions
conditionshave
havebeen
beendeveloped
developedfor
forbenzyl
benzylethers:
ethers: White, J. D.; Reddy, G. N.;
Spessard,
Spessard,G.
G.O.
O.J.J.Am.
Am. Chem.
Chem. Soc.
Soc. 1988,
1988, 110,
110, 1624.
1624.
Marco,J.J.L.;
L.;Hueso-Rodriguez,
Hueso-Rodriguez,J.J.A.
A.Tetrahedron
Tetrahedron
3. p-CH3OC6H4CH2Cl, NaH, THF. Marco,
Lett.
Lett.1988,
1988,29,
29,2459.
2459.
allyl ether cleavage:
Allyl
1. The use of allyl ether protective groups in synthesis has been reviewed: Guibe, F. Tetrahedron 1998,
54, 2967.
2. Pd(Ph3P)4, RSO2Na, CH2Cl2. Honda, M.; Morita, H.; Nagakura, I. J. Org. Chem. 1997, 62, 8932.
Cleavage of benzyl ethers:
1. H2/ Pd-C, EtOH. Heathcock, C. H.; Ratcliffe, R. J. Am. Chem. Soc. 1971, 93, 1746.
Ammonium formate is often used as a source of H2: Bieg, T.; Szeja, W. Synthesis
1985, 76.
Cleavage of 4-methoxybenzyl ethers:
1. DDQ, CH2Cl2. Benzyl ethers are stable to these conditions. Horita, K.; Yoshioka, T.;
Tanaka, T.; Oikawa, Y. Yonemitsu, O. Tetrahedron 1986, 42, 3021.
P. Hogan
8
Myers
The relative rates of hydrolysis of 1,2-O-alkylidene-_-glucofuranoses have been studied.
Protection of 1,2- and 1,3- Diols:
CH3
O
R'
HO H O
H3C CH3
O
O
Ethylidene Acetal
O
O
R'
n R
O
R'
R'
n R
O
nn R
O
R'
R'
Cyclopentylidene Ketal
Acetonide
R'
O
n R
R'
O
HO
Cyclohexylidene Ketal
O
O
R'
n R
O
O
R'
n R
3,4-Dimethoxybenzylidene
Acetal
Benzylidene Acetal 4-Methoxybenzylidene
Acetal
HO H O
HO
O
O
n R
Cyclic Carbonate
O
H 3C
CH3
H+
R'
R'
H3C CH3
CH3O OCH3
H3C
CH3
HO
R'
OH
O
H+
R'
n R
O
n R
Lewis acid plus hydride donor
O
R'
OCH3
H 3C
CH2
HO
R'
OH
n R
O
H+
R'
R'
O
nn R
R R''
H
O
n R
O
n R
R''
H
OH O
OH
R'
n R
O
[O]
O
O
R'
OH O
OH
n R
R'
R''
n R
Selective protection of polyols:
• In general, acetonide formation with 1,2-diols occurs in preference protection
to 1,3-diols;
to 1,3-diols;
benzylidene acetals
acetals display
display reversed
reversed selectivity.
selectivity. ItIt isis often
benzylidene
often possible
possible to
to discriminate
discriminate between
between
1,2- and of
1,3-diols
of a triol group.
1,2and 1,3-diols
a triol group.
OH OH
H3C
CH3
H3C CH3
n R
R'
n R
O
OH
R' R''
R'' H
O
n R
HO
n R
O
H3C CH3
n R
O
OH
HO
t1/2 = 124 h
HO
H+, H2O (ROH)
O
R'
R'
O
R' R''
General methods used to form acetals and ketals (illustrated for acetonides):
O
HO H O
O
OH
HO
t1/2 = 10 h
R' R''
OH
OH
HO
t1/2 = 20 h
General methods of cleavage:
• Generally, n = 0 or 1.
HO
CH3
CH3
O
Van Heeswijk, W. A. R.; Goedhart, J. B.; Vliegenthart, J. F. G. Carbohydr. Res. 1977, 58, 337.
R'
O
O
HO
OH
HO
t1/2 = 8 h
n R
O
O
HO H O
O
OCH3
OCH3
OCH3
O
Chem 115
Protective Groups – Protection of 1,2- and 1,3-Diols
acetone, TsOH
HO
CH3
CH3
H 3C
O
O
H3C CH3
O
OH
O
HO
CH3
CH3
5:1
Williams, D.
J. J.
Am.
Chem.
Soc.
1984,
106,206,
2949.
Williams,
D.R.;
R.;Sit,
Sit,S.-Y.
S.-Y.
Am.
Chem.
Soc.
1984,
2949.
P. Hogan
9
O
O
S
S
1) (CH3)2CO, CuSO4, TsOH
OH OH
Cl
S
2) NaOH, EtOH
3) CuI,
MgBr
OH
82%
O
H3C O
HH33CC O
H3C O
S
S
SOH
OH
CSA, H2O;
H
CH2
CH2
H
p-(CH
p-(CH
3O)C
6H
4(OCH3)23)2
3O)C
6H
4CH(OCH
67% over two steps
OTBDPS
CSA = camphorsulfonic acid
CH3
H 3C
O
OH
O HO
HO
O
CH3O
Mortlock, S. V.; Stacey, N. A.; Thomas, E. J. J. Chem. Soc., Chem. Comm. 1987, 880.
O
SO3H
• In the case of a 1,2,3-triol, careful analysis must be performed to accurately predict the site of
acetonide formation. The more substituted acetonide will be favored in cases where the substiuents
substituents
on the resultant five-membered ring will be trans. If the substituents on the five-membered ring would
be oriented cis, then the alternative, less substituted acetonide may be favored.
O
H3C
HO HO
HO
OH
OH
Ingenol analog
CH3
O
CH3
TsOH
O
1:10
OH
H3HC3C
CH
CH
3 3
OO
HH
O
O
HO
HO
HH
H3HC3C
OH OH
H
HO
CH3
O
CH3CN, PPTS
H
83%
OTBS
OH
H
H
O
OH
71%
N
OBn
OBn
CH3
CH3
CH3
OH
TrO
N
OH OH
O
N
H
O
TrO
O
MP
CH3
OH
O
N
N
H
O
MP = p-methoxyphenyl
N
OH OH
O
CH3
OH
O
N
O
PPTS, DMF, 23 °C, 96%
HO
CH3
OH
p-(CH3O)C6H4CH(OCH3)2,
N
HO
HO
Roush, W. R.; Coe, J. W. J. Org. Chem. 1989, 54, 915. See also, Mukai, C.; Miyakawa, M.;
Hanaoka, M. J. Chem. Soc., Perkin Trans. 1 1997, 913.
O
H
N
Frankowski, A.; Deredas, D.; Le Noen, D.; Tschamber, T.; Strieth, J.
Helv. Chim. Acta. 1995, 78, 1837.
OTBS
O
O
CH3
H3C
ZnCl2, PhCHO
OH
N
H 3C
OH
Ingenol
Winkler, J. D.; Kim, S.; Harrison, S.; Lewin, N. E.; Blumberg, P. M. J. Am. Chem. Soc. 1999,
121, 296.
H
N
O
C 3
H3CH
H
CH3
O
H
H
H
H3C
H
BzO HO
OH
H3 C
OTBDPS
N
O
N
O
H
Lampteroflavin, a source of bioluminescence.
Isobe, M.; Takahashi, H.; Goto, T. Tetrahedron Lett. 1990, 31, 717.
P. Hogan
10
Myers
Chem 115
Protective Groups – Selective Protection of Carbohydrates
• Selective protection methods are central to carbohydrate chemistry. The most common protective
groups in carbohydrate chemistry are acetonides, benzylidene acetals, and substituted benzylidene
acetals. This
This subject
subject has
has been
been reviewed:
reviewed: Calinaud,
Calinaud, P.;
P.;Gelas,
Gelas,J.J.ininPreparative
PreparativeCarbohydrate
Carbohydrate
Chemistry.
York, 1997.
1997.
Chemistry. Hanessian, S. Ed. Marcel Dekker, Inc.: New York,
OCH3
HO
O
OH
HO
H2 C
OH
CH3
O
H 3C
H3C
67%
OH
Selective Protection: thermodynamic control
HO
5 O 1 OH
6
acetone, H2SO4
H3C
H 3C
O H4
O 1
3
HO
O
2 O
CH3
• This reaction can be applied to many hexoses, including mannose, allose, and tallose
Kinetic vs. thermodynamic control with a pentose
CH3
1,2:5,6-Di-O-isopropylidene-D-glucopyranose
O
HO
H
O
O
p-TsOH,
OH
DMF, 64%
O
H3C CH3
H
OH
OH
Kinetic control
2-methoxypropene
HO
O
OH
OH
methyl-_-D-glucopyranoside
O
O
HO
• Note the preference for 1,3-diol protection with the
benzylidene acetal. The phenyl group is oriented
exclusively as shown, in an equatorial orientation.
HO
O
HO
OH
O
H 3C
slow
OCH3
O
methyl 4,6-benzylidene-_-D-glucopyranoside
OH
O
H
p-TsOH, DMF, 50%
Evans, M. E. Carbohydr. Res. 1972, 21, 473.
O
Leonard, N. J.; Carraway, K. L. J. Heterocycl. Chem. 1966, 3, 485.
3
OCH3
H
O
D-ribose
OCH3
OH
H
2-methoxypropene, HCl
70%
OH
HO
O
acetone, MeOH
OH
Schmidt, O. T. Methods Carbohydr. Chem. 1963, 2, 318.
OCH3
OCH3
OCH3
OCH
HO
Thermodynamic control
HO
O
HO
OH
OH
• Note that under kinetic control the most sterically accessible
(primary) alcohol
alcohol preferentially
is preferentially
attacked.
(primary)
reacted.
5
6
D-glucose
H
OH
Gelas, J.; Horton, D. Carbohydr. Res. 1979, 71, 103.
O
55%
3 2 OH
OH
O
O
D-galactose
4
HO
H
p-TsOH
O
H
OH
CH3
OH
fast
HO
OH
OH
The major isomer in solution is the pyranose form (ʜ 80%). Under
conditions that favor kinetic control, the least sterically encumbered
alcohol in this form reacts preferentially. Isomerization is proposed to
be slower than acetonide formation. This procedure also works well
with arabinose:
Selective Protection: kinetic control
OCH3
HO
O
HO
OH
OH
OH
H 2C
CH3
p-TsOH
95%
H
O
H 3C
H 3C
O
H
O
OH
OH
OH
D-glucose
Wolfrom, M. L.; Diwadkar, A. B.; Gelas, J.; Horton, D. Carbohydr. Res. 1974, 35, 87.
O
OH
O
2-methoxypropene
OH
H
HO
OH
p-TsOH, DMF, 60-70%
OH
D-arabinose
O
H3 C
O
H
OH
CH3
Gelas, J.; Horton, D. Carbohydr. Res. 1975, 45, 181.
P. Hogan
11
HO
O
Protection of cis-vicinal diols:
O
OCH3
OAc
AcO
H 3C
O
AcO
O
HO
_,_'-dichlorotoluene,
OCH3
O
O
pyr, reflux, 58%
OH
OCH3
H
H
OH
O
X
HO
H
• In general, cis-fused 5,6-systems
are formed faster than trans-fused
5,6-systems.
OH
OH
methyl-_-D-mannopyranoside
O
CH3O
O
O
H
H
O
O
dl-camphorsulfonic acid
O
OCH3
methyl-_-L-fucopyranoside
(derived from L-fucose)
O
OH
H
OH
AcOH, H2O
O
80 °C, 85%
H
O
O
CH3O
O
O
H
O
O
Kishi, Y.; Stamos, D.P. Tetrahedron Lett. 1996, 37, 8643
O
CH3
HO
OCH3
• Hydrolysis of the less substituted dioxane or dioxolane ring occurs preferentially in
substrates bearing two such groups.
O
Formation of dispiroacetals as a protective group for vicinal trans diequatorial diols:
HO
OH
O
Generalities concerning the selective removal of acetals and ketals:
O
Garegg, P. J.; Maron, L.; Swahn, C. G. Acta. Chem. Scand. 1972, 26, 518.
O
CSA, CH(OCH3)3, MeOH, reflux.
95%
HO
Hense, A.; Ley, S. V.; Osborn, H. M. I.; Owen, R. D.; Poisson, J.-F.; Warriner, S. L.;
Wesson., K. E. J. Chem. Soc., Perkins Trans. 1 1997, 2023.
OCH3
H
H
OH
O
OCH3
H 3C
OO
H3C
OCH3
BF3•OEt2 is also an effective catalyst at 23 °C.
AcO
OAc
OH
HO
(2,3-butanedione,
CH3 commercially
available)
OO
O
76%
OCH3
O
HO
H3C
H 3C
CH3
O H
O
HO
O
H
H
O
O
pH = 2, 40 °C
CH3
CH3
HO H
HO
4h
55% from
glucose
O
HO
H
H
O
O
CH3
CH3
Ley, S. V.; Leslie, R.; Tiffin, P. D.; Woods, M. Tetrahedron Lett. 1992, 4767.
Schmidt, O. T. Methods Carbohydr. Chem. 1963, 2, 318.
alsobeen
beendeveloped:
developed:
A cheaper alternative has also
• 2,2-disubstituted
2,2-disubstittued 1,3-dioxanes (6-membered rings) are generally hydrolyzed faster than the
corresponding dioxolanes (5-membered rings).
OH
HO
O
HO
OCH3
CH3O OCH3
CH3
H3C
CH3O OCH3
OH
OH
methyl-_-D-mannopyranoside
CSA, CH(OCH3)3, MeOH, reflux
O
OCH3
H 3C
OO
H3C
OCH3
91%
HO
OH
O
HO
1) 2-methoxypropene
OH
p-TsOH
2) Ac2O, py
OH
O
H3 C
O
CH3 H
D-mannose
OCH3
HO
HO
Montchamp, J.-L.; Tian, F.; Hart, M. E.; Frost, J. W. J. Org. Chem. 1996, 61, 3897.
H
OH
O
OAc
O
O
CH3
H3C
AcOH
H 2O
74% over
three steps
O
O
O
CH3
H 3C
CH3
H3C
O
O
O
H 3C
Horton, D.; Gelas, J. Carbohydr. Res. 1978, 45, 181.
OAc
O
O
OAc
CH3
P. Hogan
12
H
O
Special properties of benzylidene and substituted benzylidene acetals:
O
• In general, substitution of the ring of a benzylidene acetal with a p-methoxy substituent
increases the rate of hydrolysis by about an order of magnitude.
OCH3
is more rapidly hydrolyzed
hyrolyzed than
than
O
O
O
R'
O
R'
n R
n R
H
O
OCH3
OR'
Lewis acid
O
BnO
hydride donor
HO
OCH3
HO
OR'
OR
O
BnO
OCH3
OR'
OR
OR
A
B
R'
R'
Lewis acid
hydride donor
yield (regioisomer)
Ac
Ac
TFA
Et3SiH
95% (A)
Bn
Bn
TFA
Et3SiH
80% (A)
Bn
Bn
Bu2BOTf
BH3•THF
87% (B)
Bn
Bn
AlCl3
BH3•N(CH3)3
72% (A)
Bn
Bn
HCl, THF
NaBH3CN
82% (A)
Smith, M.; Rammler, D. H.; Goldberg, I. H.; Khorana, H. G. J. Am. Chem. Soc. 1962, 84, 430.
trifluoroaceticacid/triethylsilane
acid/triethylsilanereagent
reagentwas
wasineffective
ineffectivewith
withaagalactose
galactosederivative,
derivative,
• The trifluroacetic
however
and
other
ketals
and
acetals
however the
the others
others appear
apperartotobe
begeneral
generalmethods.
methods.Acetonides
Acetonides
and
other
ketals
and
acetals
can
can also
also be
be reduced,
reduced, so
so care
care in
in synthetic
synthetic planning
planning must
must be
be exercised.
exercised.
• Benzylidene acetals can also
can also
be cleaved
the reductively.
diol reductively.
be cleaved
fromfrom
the diol
Trifluoroacetic acid, triethylsilane :
DeNinno, M. P.; Etienne, J. B.; Duplantier, K. C. Tetrahedron Lett. 1995, 5, 669.
O
R'
O
n R
H2, Pd-C, AcOH
HO
or
NH3, Na (Birch reduction)
R'
OH
n R
Dibutylboron triflate, borane:
Chan, T. H.; Lu, J. Tetrahedron Lett., 1998, 39, 355.
Aluminum trichloride, borane trimethylamine complex;
Garegg, P. J. Pure. Appl. Chem. 1984, 56, 845.
HCl, sodium cyanoborohydride:
Qiao, L.; Vederas, J. C. J. Org. Chem. 1993, 58, 3480.
OCH3
TfOH, sodium cyanoborohydride
Kiessling, L. L.; Pohl, N. L. Tetrahedron Lett. 1997, 38, 6985.
O
R'
O
n R
Pd(OH)2, 25 °C, H2
HO
R'
OH
n R
Diisobutyl aluminum hydride is also an effective reagent for regioselective reduction of
benzylidene acetals. This reagent gives the more hindered ether.
Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593.
Oxidation of benzylidene and substituted benzylidene acetals:
• Methods have also been developed to cleave only one carbon-oxygen bond resulting in
in
the formation of a benzyl ether. This
Thisreaction
reactionhas
hasbeen
beenextensively
extensivelystudied
studiedin
inthe
thecontext
contextof
of
carbohydrate chemistry.
• Acetals containing a methine group may be oxidized at that position resulting in the formation
hydroxy
esters.
of a
hydroxy
esters.
R'
O
R
R'
O
n R
[O]
O
O
R
X
n R
• This transformation can be effected under a variety of condtions, and some
and some
variants
can be
variants
can be
used to further functionalize a substrate.
P. Hogan
13
General Reactions:
O
NBS
O
R
Proposed Mechanism:
O
O
n R
Br
R
n R
O
R
O
NBS
n R
H 2O
O
O
R
H
OH
O
n R
O
H
H
O
OCH3
O
•
NBS
OH
O
H
OH
O
OCH3
OH
OH
In the methyl 4,6-O-benzylidenehexopyranoside series, the oxidative formation of bromo
benzoates is a general reaction:
H
O
O
H
O
Br2
OCH3
NBS, BaCO3
OH
CCl4, 100%
O
Br
OCH3
O
OH
OH
O
Br
H
OH
H
O
H
O
O
H
O
OCH3
Br
NBS, BaCO3
OH
O
OH
O
O
H3C3
CH
H
H
O
H
H
H
O
O
O
H
OAc
OAc
OAc
AcO
AcO
NBS, bromotrichloromethane, then
O
O
H 3C
tetrabutylammonium
bromide
(anomerization)
CH3
O
O H
H
O
H
H
O
CH
H3C
3
AcO
AcO
AcO
AcO
O
O
O
OBz
O
OBz
H
O
O
H
OAc
OAc
H
O
O
H
OH
OH
O
CH
H3C3
AcO
AcO
O
O
OH
O
Br
Br
O
O
O
H
O O
O
O
O
H
OAc
OAc
OAc
79%
over two steps
H 3C
R'
CH3
O
O H
H
O
H
O
OH
HO
Collins, J. M.; Manro, A.; Opara-Mottah, E. C.; Ali, M. H.
J. Chem. Soc., Chem. Comm. 1988, 272.
OH
• Ozonolysis also cleaves acetals to hydroxy esters efficiently. This reaction has been
reviewed: Deslongchamps, P.; Atlani, P.; Frehel, D.; Malaval, A.; Moreau, C.
Can. J. Chem. 1974, 52, 3651.
CH3
CH3
Hg(CN)2
OCH3
O
H
O
O
Br
OCH3
OH
O
Br
• This reaction has also been used to generate glycosylating reagents
O
O
OH
O
OH
Hanessian, S.; Plessas, N. R. J. Org. Chem. 1969, 34, 1035, 1045, and 1053.
H
H
OCH3
OH
O
CCl4, 67%
O
OCH3
O
O
H
O
O
CH3
CH3
R
O
O
n R
O3
–78 °C
R'
O
O
R
OH
n R
OH O
R
R'
n R
P. Hogan
14
H
O
O
O
• Hydroxy benzoates are obtained in the presence of water.
• The axial benzoate is usually obtained.
OCH3
CH3
NBS, BaCO3
OPiv
OO
Cl
O
TMS
OBz
OBz
X = Cl , 96%
X = Br, 93%
PMP = p-methoxyphenyl
DDQ =
NC
OPiv
Cl
O
O OH
O
H2O, 72%
O
O
X
MBzO
PMPCO
or
NBr–
DDQ, CuBr2, Bu4+NBr
OBz
NC
O
–
O
Binkley, R. W.; Goewey, G. S.; Johnston, J. C. J. Org. Chem. 1984, 49, 992
CH3
+
NCl
TMS DDQ, CuCl2, Bu4 NCl
OBz
H
CH33O
O
OCH3
O
Zhang, Z.; Magnusson, G. J. Org. Chem. 1996, 61, 2394.
2-electron
• 2electron oxidation
oxidation of
of 4-methoxybenzyl
4-methoxybenzyl groups
groups with
with DDQ
DDQ isis aa general
general reaction.
reaction.
• This has been used extensively to remove 4-methoxybenzyl ethers, and also to form
4-methoxybenzylidene acetals.
OCH3
CH3
O
OCH3
OCH3
OPiv
OO
CH3
H2O attacks exo face
O
OCH3
DDQ
OPv
OO
TBSO
HO
O
OH
H3C
H
CH3
TBSO
O
OH
H
OCH3
H3C
OTBS
CH3
OTBS
OCH3
• Only this lone pair is
available for donation
into the other C-O m*
orbital.
TBSO
TBSO
O
–H+
O
H
OCH3
H3C
CH3 CH3
A useful extension of this reaction has been developed to protect diols directly:
• Oxidation of 4-methoxybenzylidene acetals has also been studied:
H
O
CH3O
H
O
O
OBz
OBz
TMS
OTBS
Jones, A. B.; Yamaguchi, M.; Patten, S.; Danishefsky, S. J.; Ragan, J. A.; Smith, D. B.;
Schreiber, S. L. J. Org. Chem. 1989, 54, 17.
King, J. F.; Allbutt, A. D. Can. J. Chem. 1970, 48, 1754.
O
OCH3
OCH3
DDQ, AcOH, H2O
HO
O
MBzO
O
CH3
TMS
OBz
OBz
79% (19% of regioisomer)
OCOPh
CH3
HO
OH
CH3
CH3O
OCOPh
CH3
2.2 equiv DDQ
71%
O
O
MP H
Oikawa, Y.; Nishi, T.; Yonemitsu, O. Tetrahedron Lett. 1983, 24, 4037.
P. Hogan
15
Myers
Phenolic Protective Groups:
OCH3
Methyl Ether
O
Chem 115
Protective Groups – Protection of Phenols
SiR3
Silyl Ethers
t-Butyl Ether Formation:
CH3
CH3
O
CH3
O
O
t-Butyl Ether
Benzyl Ether
O
O
O
R
O
Phenyl Esters
O
Si
OH
Allyl Ether
1. Isobutylene, CF3SO3H, CH2Cl2, –78 °C. Holcombe, J. L.; Livinghouse, T. J. Org. Chem.
1986, 51, 11.
2. t-Butyl halide, pyr. Masada, H.; Oishi, Y. Chem. Lett. 1978, 57.
OR
Phenyl Carbonates
Ph
CH3
CH3
O
CH3
O
OR
Acetals
Ph
t-Bu
t-Butyldiphenylsilylethyl Ether
Methyl Ether Formation:
t-Butyl Ether Cleavage:
1. CF3CO2H, 25 °C. Beyerman, H. C.; Bontekoe, J. S. Recl. Trav. Chim. Pays-Bas.
1962, 81, 691.
• For the other phenol protective groups, the sections describing these groups in the context of
alcohols should be consulted. Most of the preparations used for alcohols are applicable to
phenols. Hydroxyl protective groups that are cleaved with base are generally more labile with
phenols.
t-Butyldiphenylsilylethyl (TBDPSE) ether formation:
DIAD, PPh3
OH
OCH3
OH
Ph
HO
Ph
Si
Ph
O
Si
Ph
t-Bu
t-Bu
1. MeI, K2CO3, acetone. Vyas, G. N.; Shah, N. M. Org Synth., Collect. Vol. IV 1963, 836.
2. Diazomethane, Et2O. Bracher, F.; Schulte, B. J. Chem. Soc., Perkin Trans. 1 1996, 2619.
• The TBDPSE group is stable to 5% TFA–CH2Cl2, 20% piperidine–CH2Cl2, catalytic
hydrogenation, n-BuLi, and lead tetraacetate.
Methyl Ether Cleavage:
• The TBDPSE group has been cleaved using TBAF (2.0 equiv, 40 °C, overnight) or 50% TFA–
CH2Cl2.
1. Me3SiI, CHCl3, 25-50 °C. This reagent also cleaves benzyl, trityl, and t-butyl ethers rapidly.
Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761.
Gerstenberger, B. S.; Konopelski, J. P. J. Org. Chem. 2005, 70, 1467.
2. EtSNa, DMF, reflux. Ahmad, R.; Saa, J. M.; Cava, M. P. J. Org. Chem. 1977, 42, 1228.
3. 9-Bromo-9-borabicyclo[3.3.0]nonane, CH2Cl2. Bhatt, M. V. J. Organomet. Chem. 1978,
156, 221.
P. Hogan/Seth B. Herzon
16
Myers
Protective Groups – Protection of the Carbonyl Group
Carbonyl protective groups:
OCH3
R
R' OCH3
Preparation of dimethyl acetals and ketals:
O
R
R' O
dimethyl acetal
O
R
R' O
1,3-dioxane
S,S'-dimethylthioacetal
1,3-dithiane
R
S
R
R' S
O
R
R' S
1,3-dithiolane
1,3-oxathiolane
3. Me3SiOCH3, Me3SiOTf, CH2Cl2, –78 °C. Lipshutz, B. H.; Burgess-Henry, J.; Roth, G. P.
Tetrahedron Lett. 1993, 34, 995.
4. Sc(OTf)3, (MeO)3CH, toluene, 0 °C. Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H.
Synlett 1996, 839.
Approximate rates (L mol –1s–1 at 25-30 °C) for proton-catalyzed (HCl, water or dioxane-water)
cleavage of acetals and ketals.
H OEt
H OPh
OEt
OEt
OEt
OEt
O
5 X 103
O
O
O
H
H OEt
CH3
H
1. TFA, CHCl3, H2O. These conditions cleaved a dimethyl acetal in the presence of a
1,3-dithiane and a dioxolane acetal. Ellison, R. A.; Lukenbach, E. R.; Chiu, C.-W.
Tetrahedron Lett. 1975, 499.
H OEt
H
OEt
H 3C
Cleavage of dimethyl acetals and ketals:
3. 70% H2O2, Cl3CCO2H, CH2Cl2, t-BuOH; dimethyl sulfide. Myers, A. G.; Fundy, M. A.
M.; Lindstrom, Jr. P. A. Tetrahedron Lett. 1988, 29, 5609.
41
160
• Other dialkyl acetals are formed similarly.
2. TsOH, acetone. Colvin, E. W.; Raphael, R. A.; Roberts, J. S. J. Chem. Soc., Chem.
Commun. 1971, 858.
CH3O
6 X 103
O
OEt
PvO
PvO
5
1.2
R'
2. MeOH, LaCl3, (MeO)3CH. Acetals are formed efficiently, but ketalization is unpredictable.
Gemal, A. L.; Luche, J.-L. J. Org. Chem. 1979, 44, 4187.
aldehydes (aliphatic > aromatic) > acylic ketones ʜ cyclohexanones > cyclopentanones >
_!`-unsaturated ketones ʜ _!_"disubstituted ketones >> aromatic ketones.
H OEt
H
R
R'
1. MeOH, dry HCl. Cameron, A. F. B.; Hunt, J. S.; Oughton, J. F.; Wilkinson, P. A.; Wilson,
B. M. J. Chem. Soc. 1953, 3864.
General order of reactivity of carbonyl groups towards nucleophiles:
H3C OEt
CH3O OCH3
O
1,3-dioxolane
S
R
R' S
SCH3
R
R' SCH3
Chem 115
1.6
1.5 X 10–4
• In general, cyclic acetals are cleaved more slowly than their open chain analogs
TBSO
TBSO
• In general, dithio acetals are not cleaved by Brønsted acids.
O
O
H
H OCH
3
70% H2O2
Cl3CCO2H
t-BuOH, CH2Cl2
PvO
PvO
TBSO
TBSO
H
Me2S
H OOH
MeOH
80%
OCH33
Rates of acid-catalyzed cleavage of mono thioacetals and acetals have been determined:
H OEt
H SEt
OEt
160
H SEt
OCH3
41
H SEt
OEt
1.3
OCH33
PvO
PvO
TBSO
TBSO
H
O
O
H
• Other methods resulted in cleavage of the epoxide.
SEt
3.5 X 10–4
Satchell, D. P. N.; Satchell, R. S. Chem. Soc. Rev. 1990, 19, 55.
P. Hogan
17
Cyclic acetals and ketals:
ã When protecting _,ò-unsaturated ketones, olefin isomerization is common.
Relative rates of ketalization with common diols:
H3C CH3
HO
OH
>
CH3
OH
HO
HO
>
OH
OH
Cleavage of 1,3-dioxolanes vs. 1,3-dioxanes:
RR
R'
R'
O
R
R'
>
O
R
R'
O
O
>
O
O
O
O
A
B
Strong acids (pKa ʜ 1) tend to favor isomerization, while weaker acids (pKa 3)
favor isomerization much less so, or not at all.
acid
pKa
%A
%B
O
fumaric acid
3.03
100
0
90
phthalic acid
2.89
70
30
90
oxalic acid
1.23
80
20
93
TsOH
< 1.0
0
100
100
CH3
R
R'
>
O
50,000
CH3
+
O
O
R
R'
CH3
OH
acid
O
Relative rates of cleavage for 1,3-dioxolanes:
CH3
CH3
HO
5000
% conversion
O
De Leeuw, J. W.; De Waard, E. R.; Beetz, T.; Huisman, H. O. Recl. Trav. Chim. Pays-Bas.
1973, 92, 1047.
O
• Generally, methods used for formation of 1,3-dioxolanes are also useful for formation of
1,3-dioxanes.
1
Okawara, H.; Nakai, H.; Ohno, M. Tetrahedron Lett. 1982, 23, 1087.
Cleavage of 1,3-dioxanes and 1,3-dioxolanes:
• In general, saturated ketones can be selectively protected in the presence of _!`-unsaturated ketones.
H 3C
O
O
O
O
CH3
Et
H 3C O O
OH
HO
1. PPTS, acetone, H2O, heat. Hagiwara, H.; Uda, H. J. Chem. Soc., Chem. Commun.
1987, 1351.
2. 1M HCl, THF. Grieco, P. A.; Nishizawa, M.; Oguri, T. Burke, S. D.; Marinovic, N.
J. Am. Chem. Soc. 1977, 43, 4178.
O
3. Me2BBr, CH2Cl2, –78 °C. This reagent also cleaves MEM and MOM ethers.
Guindon, Y.; Morton, H. E.; Yoakim, C. Tetrahedron Lett. 1983, 24, 3969.
p-TsOH•H2O, 95%
Bosch, M. P.; Camps, F.; Coll, J.; Guerrero, T.; Tatsuoka, T.; Meinwald, J.
J. Org. Chem. 1986, 51, 773.
• Conditions have been developed to protect _!`-unsaturated ketones selectively.
H 3C
O
O
TMSO
H 3C
OTMS
TMSOTf, CH2Cl2
–78 °C, 92%
4. NaI, CeCl3•7H2O, CH3CN. Marcantoni, E.; Nobili, F.; Bartoli, G.; Bosco, M.;
Sambri, L. J. Org. Chem. 1997, 62, 4183. This method is selective for
cleavage of ketals in the presence of acetals. It is also selective for ketals
of _,ß-unsaturated ketones over ketals of saturated ketones.
O
CH3 O
H3C
O
O
O
Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357.
H 3C
H
H
O
O
H
CH3 O
H3C
O
NaI, CeCl3•7H2O
CH3CN
23 °C, 2h
88%
H3C
H
H
H
O
P. Hogan
18
Dithioacetals:
S,S'-dialkyl
In addition to serving as a protective group, S,
S'-dialkyl acetals
acetals serve
serve as
as an
an umpolung
umpolung
synthon in the construction the
of carbon-carbon
bonds.
of carbon-carbon
bonds.
General methods of formation of S,S''-dialkyl acetals:
O
see below
O
R
R
S
SR
S
R
R' S
R
R' SR
R
R' S
1. RSH, HCl, 20 °C. Zinner, H. Chem. Ber. 1950, 83, 275.
R
CH3O
O
2. RSSi(CH3)3, ZnI2, Et2O. Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbitt, S. L. J. Am.
Chem. Soc. 1977, 99, 5009.
3. RSH, BF3•Et2O, CH2Cl2. Marshall, J. A.; Belletire, J. L. Tetrahedron Lett. 1971, 871. See also
Hatch, R. P.; Shringarpure, J.; Weinreb, S. M. J. Org. Chem. 1978, 43, 4172. _!`-Unsaturated
ketones are reported not to isomerize under these conditions. However, with any of the above
mentioned conditions conjugate addition is a concern.
• A variety of methods has been developed for the cleavage of S,S''-dialkyl acetals, largely
due to the fact that these functional groups are often difficult to remove.
SR
=
CH3
Li
S
O
O
R
SR
O
CH3O
Cl
60%
CH3O
CH3
O
O
CH2
CH3O
CH3O
CH3
S
CH2
S
S
O
CH3
CH3
O
O
CH3O
General methods of cleavage of S,S''-dialkyl acetals:
Cl
O
Radicicol dimethyl ether
1. Hg(ClO4)2, MeOH, CHCl3. Lipshutz, B. H.; Moretti, R.; Crow, R. Tetrahedron Lett. 1989, 30,
15, and references therein.
2. CuCl2, CuO, acetone, reflux. Stutz, P.; Stadler, P. A. Org. Synth. Collect. Vol. 1988, 6, 109.
Garbaccio, R. M.; Danishefsky, S. J. Org. Lett. 2000, 2, 3127.
3. m-CPBA; Et3N Ac2O, H2O. Kishi, Y.; Fukuyama, T.; Natatsuka, S. J. Am. Chem. Soc. 1973,
95, 6490.
4. (CF3CO2)2IPh, H2O, CH3CN. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287.
P. Hogan
19
Myers
Carboxyl Protective Groups:
R
OCH3
Methyl Ester
O
R
O
R
CF3
R
O
Allyl Ester
O
R
R
O
R
O
SiR3
Phenyl Ester
R'
Benzyl Ester
R'
O
O
Ortho Ester
Cl
O
N
P
O
O
Formation:
O
O
R
OH
OCH3
O
O
O
O
R''
1,3-Dioxalone
N
OR'
Methyl esters:
R'
R''
Silyl Ester
O
O
4-Methoxybenzyl Ester
O
R
CH2Cl2
BOPCl =
R
OR
OR
OR
O
Diago-Meseguer, J.; Palomo-Coll, A. L.; Fernandez-Lizarbe, J. R.; Zugaza-Bilbao, A.
Synthesis, 1980, 547.
OCH3
2,2,2-Trifluoroethyl Ester
OH
O
O
O
BOPCl, Et3N,
R'OH
1,1-Dimethylallyl Ester
O
O
R
O CH3 CH3
O
CH3
CH3
t-Butyl Ester
O
R
O
O CH3
O
R
Chem 115
Protective Groups – Protection of the Carboxyl Group
1. TMSCHN2, MeOH, benzene. Hashimoto, N.; Aoyama, T.; Shioiri, T. Chem. Pharm.
Bull. 1981, 29, 1475. This is considered a safe alternative to using diazomethane.
2. MeOH, H2SO4. Danishefsky, S.; Hirama, M.; Gombatz, K.; Harayama, T.; Berman, E.;
Schuda, P. J. Am. Chem. Soc. 1978, 100, 6536.
1,3-Dioxanone
Cleavage:
Specific to !- and "-hydroxy acids
General preparations of esters:
1. LiOH, MeOH, 5 °C. Corey, E. J.; Szekely, I.; Shiner, C. S. Tetrahedron Lett. 1977, 3529.
2. Pig liver esterase. This enzyme is often effective for the enantioselective cleavage of a
meso diester.
O
O
R
OH
R'OH
EDC•HCl or DCC, DMAP
OCH3
OCH3
O
R
O
PLE
O
OR'
OH
OCH3
pH = 6.8
98%, 96% ee
O
Kobayashi, S.; Kamiyama, K.; Iimori, T.; Ohno, M. Tetrahedron Lett. 1984, 25, 2557.
EDC•HCl = 1-[3-(dimethylamino)propyl]-3-ethyl carbodiimide hydrochloride
H3C
N
N C N Et
CH3 •HCl
O
CH3O
PLE
O
OCH3
OCH3
O
O
DCC = dicyclohexylcarbodiimide
O
CH3O
N C N
EDC•HCl is more expensive, but the urea by-product is water soluble and simplifies the
purification of products
O
O
CH3O
O
OH
O
er = 21.5
Mohr, P.; Rosslein, L.; Tamm, C. Tetrahedron Lett. 1989, 30, 2513.
P. Hogan/Seth B. Herzon
65
20
t-Butyl esters
1,1-Dimethylallyl esters
Formation:
Formation:
O
O
OH
R
R
CH3
O
1. CH3 CH3
CH3
CH3
Cl
R
O CH3 CH3
CuI, Cs2CO3
O
1. Isobutylene, H2SO4, Et2O, 25 °C. McCloskey, A. L.; Fonken, G. S.; Kluiber, R. W.; Johnson,
W. S. Org. Synth., Collect. Vol. IV. 1963, 261.
OH
2. H2, Lindlar's cat.
R
O
2. 2,4,6-trichlorobenzoyl chloride, Et3N, THF; t-BuOH, DMAP, benzene, 20 °C. Inanaga, J.;
Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
3. t-BuOH, EDC•HCl, DMAP, CH2Cl2. Dhaon, M. K.; Olsen, R. K.; Ramasamy, K. J. Org. Chem.
1982, 47, 1962.
4. i-PrN=C(O-tBu)NH-i-Pr, toluene, 60 °C. Burk, R. M.; Berger, G. D.; Bugianesi, R. L.; Girotra,
N. N.; Parsons, W. H.; Ponpipom, M. M. Tetrahedron Lett. 1993, 34, 975.
• The 1,1-dimethylallyl ester is removed under the same conditions as an allyl ester, but is less
susceptible to nucleophilic attack at the acyl carbon.
Sedighi, M.; Lipton, M. A. Org. Lett. 2005, 7, 1473.
Benzyl esters
Cleavage:
1. CF3CO2H, CH2Cl2. Bryan, D. B.; Hall, R. F.; Holden, K. G.; Huffman, W. F.; Gleason, J. G.
J. Am. Chem. Soc. 1977, 99, 2353.
O
O
R
OH
R
O
2. Bromocatechol borane. Boeckman Jr., R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411.
Benzyl esters are typically prepared by the methods outlined in the general methods
section.
Allyl esters
Cleavage:
Formation:
O
O
R
1. H2, Pd–C. Hartung, W. H.; Simonoff, R. Org. React. 1953, 7, 263.
2. BCl3, CH2Cl2. Schmidt, U.; Kroner, M.; Griesser, H. Synthesis 1991, 294.
OH
R
O
Phenyl esters
Formation:
1. Allyl bromide, Cs2CO3, DMF. Kunz, H.; Waldmann, H.; Unverzagt, C. Int. J. Pept. Protein
Res. 1985, 26, 493.
2. Allyl alcohol, TsOH, benzene, (–H2O). Wladmann, H.; Kunz, H. Liebigs Ann. Chem.
1983, 1712.
O
R
O
OH
R
O
Cleavage:
Phenyl esters are typically prepared by the methods outlined in the general methods section.
They have the advantage of being cleaved under mild, basic conditions.
1. The use of allyl esters in synthesis has been reviewed. Guibe, F.: Tetrahedron 1998,
54, 2967.
2. Pd(Ph3P)4, RSO2Na, CH2Cl2. Honda, M.; Morita, H.; Nagakura, I. J. Org. Chem. 1997,
62, 8932.
1. H2O2, H2O, DMF, pH = 10.5. Kenner, G. W.; Seely, J. H. J. Am. Chem. Soc. 1972, 94,
3259.
P. Hogan/ Seth B. Herzon
21
Ortho Esters:
The synthesis of simple ortho esters has been reviewed: Dewolfe, R. H. Synthesis, 1974, 153.
OBO ester
O
O
R
OH
HO
1. Esterification
R
O
2. BF3•OEt2, CH2Cl2
–15 °C.
CH3
O
O
CH3
Corey, E. J.; Raju, N. Tetrahedron Lett. 1983, 24, 5571.
Alternatively, ortho esters can be prepared from a nitrile:
1. HCl, MeOH
Br
CN
2.
O
Br
O
OH
HO
O
OH
68%
Voss, G.; Gerlach, H. Helv. Chim. Acta. 1983, 66, 2294.
Special Carboxylates, !-Hydroxy and "-Hydroxy:
n
R
O
OH OH
n
R
O
O
O
R''
Formation:
1. Ketone or aldehyde, Sc(NTf2)3, CH2Cl2, MgSO4. Ishihara, K.; Karumi, Y.; Kubota, M.;
Yamamoto, H. Synlett 1996, 839.
2. Pivaldehyde, acid catalyst. Seebach, D.; Imwinkelried, R.; Stucky, G. Helv. Chim. Acta. 1986,
70, 448, and references cited therein.
P. Hogan
67
22
Myers
Protection of amines:
Formation of benzylamines:
O
O
O
RR'N
Chem 115
Protective Groups – Protection of the Amino Group
O
RR'N
RR'N
RO
OCH3
O
O
CH3
CH3
CH3
RR'N
O
CCl3
9-Fluorenylmethyl
Carbamate
9-Fluorenylmethyl Carbamate 2,2,2-Trichloroethyl Carbamate t-Butyl
Methyl
Methyl Carbamate
Carbamate
Carbamate
2,2,2-trichloroethyl Carbamate t-Butyl Carbamate
(Fmoc)
O
O
O
RR'N
RR'N
If primary amines are the starting materials, dibenzylamines are the products.
O
RNH2
H
RHN
Mix and remove water;
NaBH4, alcoholic solvent
RR'N
O
O
Base
X = Cl, Br
O
RR'N
RR'N
O
(Boc)
(Troc)
X
RR'NH
CF3
Si(CH3)3
Formation of allylamines:
Allyl Carbamate
2-(Trimethylsilyl)ethyl Carbamate
Benzyl carbamate
(Alloc)
(Teoc)
Trifluoroacetamide
Br
RR'NH
(Cbz)
Base
RR'N
If primary amines are the starting materials, diallylamines are the products.
RR'N
RR'N
RR'N
OAc
RR'NH
Allylamine
Benzylamine
Tritylamine
Diisopropylamine,
Pd(PPh
Pd(Ph
3)4
3P)
RR'N
Garro-Helion, F.; Merzouk, A.; Guibe, F. J. Org. Chem. 1993, 58, 6109.
General preparation of carbamates:
O
RR'NH
RR'NH
Base
RO
Cl
O
O
RO
O
RO
Formation of tritylamines:
OR
Base
OR
O
RR'NH
O
RR'N
Su = succinimide
RR'N
CHCl3, DMF
RR'NH
Br
RR'N
OR
Base
O–Su
O
O
RR'N
OR
Mutter, M.; Hersperger, R. Synthesis 1989, 198.
Bases that are typically employed are tertiary amines or aqueous hydroxide.
P. Hogan
23
2,2,2-Trichloroethyl Carbamate:
Cleavage of carbamates:
Methyl Carbamate:
O
RR'N
O
RR'NH
O
RR'N
CCl3
RR'NH
OCH3
1. TMSI, CH2Cl2. Raucher, S.; Bray, B. L.; Lawrence, R. F. J. Am. Chem. Soc. 1987, 109, 442.
2. MeLi, THF. Tius, M.; Keer, M. A. J. Am. Chem. Soc. 1992, 114 , 5959.
1. Zn, H2O, THF, pH = 4.2. Just. G.; Grozinger, K. Synthesis, 1976, 457.
2. Cd, AcOH. Hancock, G.; Galpin, I. J.; Morgan, B. A. Tetrahedron Lett. 1982, 23, 249.
2-Trimethylsilylethyl Carbamate:
9-Fluorenylmethyl Carbamate:
O
O
RR'N
RR'N
O
O
RR'NH
Si(CH3)3
RR'NH
+F–
NF,
KF•H
CH
5050
ºC.
Carpino,
L. A.;
Sau,
A.A.
C.C.
J. J.
Chem.
Soc.,
Chem.
, KF•H
CH
°C.
Carpino,
L. A.;
Sau
Chem.
Soc.,
Chem.
1. Bu4N
2O,
3CN,
2O,
3CN,
Commun. 1979, 514.
1. Amine base. The half-lives for the deprotection of Fmoc-ValOH have been studied:
studied
Atherton, E.; Sheppard R. C. in The Peptides, Udenfriend,
Udenfriend,S.
S.and
andMeienhefer
MeienheferEds.,
Eds.,
Academic Press: New York, 1987, Vol. 9, p. 1.
Amine base in DMF
Half-Life
20% piperidine
6s
5% piperidine
20 s
50% morpholine
1 min
50% dicyclohexylamine
35 min
2. CF3COOH, 0 °C. Carpino, L. A.; Tsao, J. H,; Ringsdorf, H.; Fell, E.; Hettrich, G. J. Chem.
Soc., Chem. Commun. 1978, 358.
3. Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF), DMF. Roush, W. R.;
Coffey, D.S.; Madar, D. J. J. Am. Chem. Soc. 1997, 49, 2325.
t-Butyl Carbamate
carbamate:
O
RR'N
O
10% p-dimethylaminopyridine
85 min
50% diisopropylethylamine
10.1 h
2. Bu4+NF,
F–, DMF.
DMF.Ueki,
Ueki,M.;
M.;Amemiya,
Amemiya,M.M.Tetrahedron
TetrahedronLett.
Lett.1987,
1987,28,
28,6617.
6617.
3. Bu4+NF,
F–, n-C
n-C88H
H17
SH. Thiols
Thiolscan
canbe
beused
usedtotoscavenge
scavengeliberated
liberatedfulvene.
fulvene.
17SH.
Ueki, M.; Nishigaki, N.; Aoki, H.; Tsurusaki, T.; Katoh, T. Chem. Lett. 1993, 721.
CH3
CH3
CH3
RR'NH
1. CF3COOH, PhSH. Thiophenol is used to scavenge t-butyl cations. TBS and TBDMS ethers
are reported to be stable under these conditions. Jacobi, P, A.; Murphree, F.;
Rupprecht, F.; Zheng, W. J . Org. Chem. 1996, 61, 2413.
2. Bromocatecholborane. Boeckman Jr., R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411.
P. Hogan
24
Benzylamine:
Allyl Carbamate:
O
RR'N
RR'N
RR'NH
O
1. Pd(Ph
– 100%yield.
yield.Dangles,
Dangles,
O.;
Guibe,
Balavoin,
Lavielle,
Pd(PPh
70–100%
O.;
Guibe,
F.;F.;
Balavoin,
G.;G.;
Lavielle,
3P)
3)4, Bu3SnH, AcOH, 70
S.; Marquet, A. J. Org. Chem. 1987, 52, 4984.
2. Pd(Ph3P)4, (CH3)2NTMS, 89 – 100% yield. Merzouk A.; Guibe, F. Tetrahedron Lett. 1992,
33, 477.
RR'NH
1. Pd–C, ROH, HCO2NH4. Ram, S.; Spicer, L. D. Tetrahedron Lett. 1987, 28, 515.
2. Na, NH3. Bernotas, R. C.; Cube, R. V. Synth. Comm. 1990, 20, 1209.
Allylamine:
Benzyl Carbamate:
RR'N
RR'NH
O
RR'N
RR'NH
O
1. Pd(Ph3P)4, RSO2Na, CH2Cl2. Most allyl groups are cleaved by this method, including
allyl ethers and esters. Honda, M.; Morita, H.; Nagakura, I. J. Org. Chem. 1997, 62, 8932.
Tritylamine:
Bergmann,M.;
M.;Zervas,
Zervas,L.
L.Chem.
Chem.Ber.
Ber.1932,
1932,65,
65,1192.
1192.
1. H2/Pd–C. Bergmann,
Theseconditions
conditionscleave
cleavethe
thebenzyl
benzylcarbamate
carbamatein
inthe
thepresence
presenceof
ofaabenzyl
benzyl
2. H2/Pd–C, NH3. These
ether. Sajiki,
Sajiki,H.
H.Tetrahedron
TetrahedronLett.
Lett.1995,
1995,36,
36,3465.
3465.
RR'N
RR'NH
Org.
Chem.
1974,
39,
1427.
CH22Cl
Cl22.. Felix,
Felix,A.A.M.
M.J. J.
Org.
Chem.
1974,
39,
1427.
3. BBr3, CH
4. Bromocatecholborane. This reagent is reported to cleave benzyl carbamates in the presence
of benzyl ethers and TBS ethers. Boeckman
BoeckmanJr.,
Jr.,R.
R.K.;
K.;Potenza,
Potenza,J.J.C.
C.Tetrahedron
TetrahedronLett.
Lett.
1985, 26, 1411.
1. 0.2% TFA, 1% H2O, CH2Cl2. Alsina, J.; Giralt, E.; Albericio, F. Tetrahedron Lett. 1996,
37, 4195.
Trifluoroacetamide:
O
RR'N
CF3
RR'NH
1. K2CO3, MeOH. Bergeron, R. J.; McManis, J. J. J. Org. Chem. 1988, 53, 3108.
P. Hogan
25