LIBROS UNIVERISTARIOS
Y SOLUCIONARIOS DE
MUCHOS DE ESTOS LIBROS
LOS SOLUCIONARIOS
CONTIENEN TODOS LOS
EJERCICIOS DEL LIBRO
RESUELTOS Y EXPLICADOS
DE FORMA CLARA
VISITANOS PARA
DESARGALOS GRATIS.
M. J. Roberts - 7/12/03
Chapter 2 - Mathematical Description of Signals
Solutions
1. If g( t) = 7e −2 t − 3 write out and simplify
(a)
g( 3) = 7e −9
(b)
g(2 − t) = 7e −2( 2 − t ) − 3 = 7e −7 + 2 t
(c)
t
− −11
t
5
g + 4 = 7e
10
(d)
g( jt) = 7e − j 2 t − 3
(e)
(f)
g( jt) + g(− jt)
e − j 2t + e j 2t
= 7e −3
= 7e −3 cos(2 t)
2
2
− jt − 3
jt − 3
g
+ g
2
2
e − jt + e jt
=7
= 7 cos( t)
2
2
2. If g( x ) = x 2 − 4 x + 4 write out and simplify
(a)
g( z) = z 2 − 4 z + 4
(b)
g( u + v ) = ( u + v ) − 4 ( u + v ) + 4 = u 2 + v 2 + 2 uv − 4 u − 4 v + 4
(c)
g(e jt ) = (e jt ) − 4 e jt + 4 = e j 2 t − 4 e jt + 4 = (e jt − 2)
(d)
g(g( t)) = g( t 2 − 4 t + 4 ) = ( t 2 − 4 t + 4 ) − 4 ( t 2 − 4 t + 4 ) + 4
2
2
2
2
g(g( t)) = t 4 − 8 t 3 + 20 t 2 − 16 t + 4
(e)
g(2) = 4 − 8 + 4 = 0
3. What would be the numerical value of “g” in each of the following MATLAB
instructions?
(a)
t = 3 ; g = sin(t) ;
(b)
x = 1:5 ; g = cos(pi*x) ;
(c)
f = -1:0.5:1 ; w = 2*pi*f ; g = 1./(1+j*w) ;
0.1411
[-1,1,-1,1,-1]
Solutions 2-1
M. J. Roberts - 7/12/03
0.0247 +
0.0920 +
1
0.0920 −
0.0247 −
j 0.155
j 0.289
j 0.289
j 0.155
4. Let two functions be defined by
1 , sin(20πt) ≥ 0
x1 ( t) =
−1 , sin(20πt) < 0
and
t , sin(2πt) ≥ 0
x 2 ( t) =
.
− t , sin(2πt) < 0
Graph the product of these two functions versus time over the time range, −2 < t < 2 .
x(t)
2
-2
t
2
-2
5. For each function, g( t) , sketch g(− t) , − g( t) , g( t − 1) , and g(2t) .
(a)
(b)
g(t)
g(t)
4
3
t
2
-1
t
1
-3
g(-t)
g(-t)
4
-g(t)
-g(t)
3
t
-2
3
-1
t
1
2
4
-3
g(t-1)
g(t-1)
g(2t)
4
3
4
1
3
t
t
1
2
t
1
-1
t
-3
g(2t)
3
1
-3
6. A function, G( f ) , is defined by
Solutions 2-2
t
-1
2
1
2
-3
t
M. J. Roberts - 7/12/03
f
G( f ) = e − j 2πf rect .
2
Graph the magnitude and phase of G( f − 10) + G( f + 10) over the range, −20 < f < 20 .
f + 10
f − 10
− j 2π f +10
G( f − 10) + G( f + 10) = e − j 2π ( f −10) rect
+ e ( ) rect
2
2
|G( f )|
1
-20
f
20
Phase of G( f )
π
-20
f
20
-π
7. Sketch the derivatives of these functions.
(All sketches at end.)
(a)
g( t) = sinc( t)
(b)
g( t) = (1 − e
−t
g′ ( t) =
π 2 t cos(πt) − π sin(πt) πt cos(πt) − sin(πt)
=
πt 2
(πt) 2
e − t , t ≥ 0 − t
g′ ( t) =
= e u( t)
0 , t < 0
) u(t)
(a)
(b)
x(t)
x(t)
1
1
-4
4
t
-1
-1
dx/dt
1
1
4
-1
t
-1
dx/dt
-4
4
t
-1
4
t
-1
8. Sketch the integral from negative infinity to time, t, of these functions which are zero for
all time before time, t = 0.
Solutions 2-3
M. J. Roberts - 7/12/03
g(t)
g(t)
1
1
1
2
3
t
1
2
∫ g(t) dt
1
2
3
1
2
3
t
∫ g(t) dt
1
1
1
2
1
2
t
3
t
9. Find the even and odd parts of these functions.
(a)
g( t) = 2 t 2 − 3t + 6
2 t 2 − 3t + 6 + 2(− t) − 3(− t) + 6 4 t 2 + 12
g e ( t) =
=
= 2t 2 + 6
2
2
2
2 t 2 − 3t + 6 − 2(− t) + 3(− t) − 6 −6 t
g o ( t) =
=
= −3t
2
2
2
(b)
π
g( t) = 20 cos 40πt −
4
π
π
20 cos 40πt − + 20 cos −40πt −
4
4
g e ( t) =
2
Using cos( z1 + z2 ) = cos( z1 ) cos( z2 ) − sin( z1 ) sin( z2 )
g e ( t) =
π
π
20 cos( 40πt) cos − − sin( 40πt) sin −
4
4
+20 cos(−40πt) cos − π − sin(−40πt) sin − π
4
4
2
π
π
20 cos( 40πt) cos + sin( 40πt) sin
4
4
+20 cos( 40πt) cos π − sin( 40πt) sin π
4
4
g e ( t) =
2
Solutions 2-4
M. J. Roberts - 7/12/03
20
π
g e ( t) = 20 cos cos( 40πt) =
cos( 40πt)
4
2
π
π
20 cos 40πt − − 20 cos −40πt −
4
4
g o ( t) =
2
Using cos( z1 + z2 ) = cos( z1 ) cos( z2 ) − sin( z1 ) sin( z2 )
π
π
20 cos( 40πt) cos − − sin( 40πt) sin −
4
4
−20 cos(−40πt) cos − π − sin(−40πt) sin − π
4
4
g o ( t) =
2
g o ( t) =
π
π
20 cos( 40πt) cos + sin( 40πt) sin
4
4
−20 cos( 40πt) cos π − sin( 40πt) sin π
4
4
2
20
π
g o ( t) = 20 sin sin( 40πt) =
sin( 40πt)
4
2
(c)
2 t 2 − 3t + 6
g( t) =
1+ t
2 t 2 − 3t + 6 2 t 2 + 3t + 6
+
1
1− t
+
t
g e ( t) =
2
(2t
g e ( t) =
g e ( t) =
2
− 3t + 6)(1 − t) + (2 t 2 + 3t + 6)(1 + t)
(1 + t)(1 − t)
2
4 t 2 + 12 + 6 t 2 6 + 5 t 2
=
1 − t2
2(1 − t 2 )
2 t 2 − 3t + 6 2 t 2 + 3t + 6
−
1
1− t
+
t
g o ( t) =
2
Solutions 2-5
M. J. Roberts - 7/12/03
(2t
g o ( t) =
2
− 3t + 6)(1 − t) − (2 t 2 + 3t + 6)(1 + t)
(1 + t)(1 − t)
2
−6 t − 4 t 3 − 12 t
2t 2 + 9
g o ( t) =
= −t
1 − t2
2(1 − t 2 )
sin(πt) sin(−πt)
+
t
π
−πt = sin(πt)
g e ( t) =
πt
2
(d)
g( t) = sinc( t)
(e)
g( t) = t(2 − t 2 )(1 + 4 t 2 )
g o ( t) = 0
g( t) = {t (2 − t 2 )(1 + 4 t 2 )
4 4
3
odd 12312
even
even
Therefore g( t) is odd, g e ( t) = 0 and g o ( t) = t(2 − t 2 )(1 + 4 t 2 )
(f)
g( t) = t(2 − t)(1 + 4 t)
g e ( t) =
t(2 − t)(1 + 4 t) + (− t)(2 + t)(1 − 4 t)
2
g e ( t) = 7 t 2
g o ( t) =
t(2 − t)(1 + 4 t) − (− t)(2 + t)(1 − 4 t)
2
g o ( t) = t(2 − 4 t 2 )
10. Sketch the even and odd parts of these functions.
Solutions 2-6
M. J. Roberts - 7/12/03
g(t)
g(t)
1
1
t
1
1
2
t
-1
g e(t)
g e(t)
1
1
t
1
1
2
t
-1
g o(t)
g o(t)
1
1
t
1
1
2
t
-1
(a)
(b)
11. Sketch the indicated product or quotient, g( t) , of these functions.
(a)
(b)
1
1
-1
1
-1
t
1
-1
t
-1
g(t)
g(t)
1
Multiplication
-1
1
t
1
Multiplication
-1
1
t
-1
g(t)
g(t)
1
1
-1
1
-1
t
-1
1
-1
Solutions 2-7
t
M. J. Roberts - 7/12/03
(c)
(d)
1
1
t
-1
t
1
g(t)
g(t)
Multiplication
1
1
Multiplication
1
t
t
1
g(t)
g(t)
-1
1
t
-1
1
-1
t
1
(e)
(f)
1
1
...
...
-1
1
t
1
t
-1
g(t)
-1
g(t)
1
Multiplication
1
Multiplication
-1
t
1
t
1
-1
g(t)
g(t)
1
...
...
-1
1
1
t
t
1
-1
-1
(g)
(h)
1
1
t
-1
-1
-1
1
t
g(t)
Division
1
1
g(t)
π
Division
t
1
g(t)
t
g(t)
1
t
-1
-1
1
t
12. Use the properties of integrals of even and odd functions to evaluate these integrals in
the quickest way.
Solutions 2-8
M. J. Roberts - 7/12/03
1
1
−1
−1 even
∫ (2 + t)dt = ∫
(a)
1
1
−1 odd
0
2{ dt + ∫ {t dt = 2 ∫ 2 dt = 4
(b)
1
20
1
20
∫ [4 cos(10πt) + 8 sin(5πt)]dt = ∫
−
1
20
−
1
20
∫
(c)
1
−
20
1
20
4 cos(10πt) dt +
14243
even
1
20
1
20
−
1
20
odd
0
4 t{ cos(10πt) dt = 0
1424
3
odd
even
142
43
odd
1
1
10
10
cos(10πt)
cos(10πt)
(d) ∫ t{ sin(10πt) dt = 2 ∫ t sin(10πt) dt = 2 − t
+
dt
1
424
3
10π 0 ∫0 10π
1 odd
0
odd
− 142
43
10
even
1
10
1
10
1
10
sin(10πt)
1
1
=
(10π3t)dt == 2
+
2
∫1 odd{t sin
1
424
100π
(10π ) 0 50π
odd
− 142
43
10
1
10
even
1
(e)
1
1
[
−t
−t
−t
−t
∫ e{ dt = 2∫ e dt = 2∫ e dt = 2 −e
−1 even
0
]
1
0
= 2(1 − e −1 ) ≈ 1.264
0
1
(f)
∫
−t
t{ e{
dt = 0
odd2
even
−1 1
3
odd
13. Find the fundamental period and fundamental frequency of each of these functions.
(a)
g( t) = 10 cos(50πt)
f 0 = 25 Hz , T0 =
1
s
25
(b)
π
g( t) = 10 cos 50πt +
4
f 0 = 25 Hz , T0 =
1
s
25
(c)
g( t) = cos(50πt) + sin(15πt)
1
15
= 0.4 s
f 0 = GCD 25, = 2.5 Hz , T0 =
2.5
2
(d)
8
(5π3t)dt = 8 ∫ cos(10πt)dt =
∫ 81sin
424
10π
3π
g( t) = cos(2πt) + sin( 3πt) + cos 5πt −
4
Solutions 2-9
M. J. Roberts - 7/12/03
1
3 5 1
f 0 = GCD1, , = Hz , T0 = = 2 s
1
2 2 2
2
14. Find the fundamental period and fundamental frequency of g( t) .
...
g(t)
(a) ...
...
1
t
...
t
1
(b)
...
...
+
t
1
...
...
t
1
(c)
...
...
+
g(t)
t
1
1
s
3
(a)
f 0 = 3 Hz and T0 =
(b)
f 0 = GCD(6, 4 ) = 2 Hz and T0 =
(c)
f 0 = GCD(6, 5) = 1 Hz and T0 = 1 s
1
s
2
15. Plot these DT functions.
(a)
2π ( n − 2)
2πn
x[ n ] = 4 cos
− 3 sin
12
8
,
−24 ≤ n < 24
x[n]
7
-24
24
n
-7
(b)
x[ n ] = 3ne
−
n
5
,
−20 ≤ n < 20
x[n]
6
-20
20
-6
2
(c)
n
x[ n ] = 21 + 14 n 3
2
, −5 ≤ n < 5
Solutions 2-10
n
g(t)
M. J. Roberts - 7/12/03
x[n]
2000
-5
n
5
-2000
n
2
−
2πn
16. Let x1[ n ] = 5 cos
and x 2 [ n ] = −8e 6 . Plot the following combinations of those
8
two signals over the DT range, −20 ≤ n < 20 . If a signal has some defined and some
undefined values, just plot the defined values.
x[n]
40
-20
(a)
x[ n ] = x1[ n ] x 2 [ n ]
20
n
-40
x[n]
20
-20
(b)
x[ n ] = 4 x1[ n ] + 2 x 2 [ n ]
20
n
-40
x[n]
20
-20
(c)
x[ n ] = x1[2 n ] x 2 [ 3n ]
20
n
-40
x[n]
10000
-20
(d)
x[ n ] =
x1[2 n ]
x 2 [− n ]
20
n
-50000
x[n]
5
-20
(e)
n
n
x[ n ] = 2 x1 + 4 x 2
2
3
20
-40
Solutions 2-11
n
M. J. Roberts - 7/12/03
17. A function, g[ n ] is defined by
−2 , n < −4
g[ n ] = n , − 4 ≤ n < 1 .
4
, 1≤ n
n
n
Sketch g[− n ], g[2 − n ], g[2n ] and g .
2
g[n]
4
-10
n
10
-4
g[- n]
g[2- n]
4
4
10
-10
10
n
-10
-4
-4
g[2n]
g[n/2]
4
n
4
-10
10
-10
n
10
-4
n
-4
18. Sketch the backward differences of these DT functions.
(a)
(b)
g[n]
g[n]
1
1
-4
20
n
-4
-1
20
n
-1
∆g[n-1]
∆g[n-1]
1
1
-4
20
n
-4
-1
20
n
-1
(c)
2
g[n] = (n/10)
4
-4
∆g[n-1]
20
n
0.5
-4
-0.25
20
n
19. Sketch the accumulation, g[ n ], from negative infinity to n of each of these DT functions.
Solutions 2-12
M. J. Roberts - 7/12/03
(a)
h[ n ] = δ [ n ]
(b)
h[ n ] = u[ n ]
(c)
2πn
h[ n ] = cos
u[ n ]
16
(d)
2πn
h[ n ] = cos
u[ n ]
8
(e)
2πn
h[ n ] = cos
u[ n + 8]
16
(a)
-16
h[n]
h[n]
1
1
g[n]
16
n
(b)
-16
g[n]
1
-16
16
n
-16
16
(c)
16
1
n
(d)
g[n]
-16
-3
16
16
-1
3
n
-16
16
-3
h[n]
1
(e)
-16
-1
16
n
g[n]
3
-16
n
g[n]
3
-16
n
h[n]
1
-1
n
16
h[n]
-16
16
-3
16
n
20. Find and sketch the even and odd parts of these functions.
−
n
4
(a)
g[ n ] = u[ n ] − u[ n − 4 ]
(b)
g[ n ] = e
(c)
2πn
g[ n ] = cos
4
(d)
2πn
g[ n ] = sin
u[ n ]
4
Solutions 2-13
u[ n ]
n
M. J. Roberts - 7/12/03
g[n]
g[n]
1
-10
-1
1
10
n
-10
-1
g [n]
-1
n
-10
-1
-10
10
n
-10
-1
10
-10
-1
10
10
n
10
n
1
n
-10
-1
go[n]
go[n]
1
-1
n
ge[n]
-1
-10
10
1
n
ge[n]
1
n
g[n]
-1
-10
10
o
1
g[n]
1
n
g [n]
o
1
-1
10
1
10
g [n]
-10
n
g [n]
e
e
1
-10
10
10
n
1
-10
-1
21. Sketch g[ n ].
(a)
(b)
g1[n]
g1[n]
1
-10
1
10
-4
n
20
-1
g2[n]
g2[n]
g[n]
1
g[n]
1
-10
10
n
Multiplication
-4
-1
20
(d)
1
1
20
n
-10
-1
10
n
-1
g2[n]
g[n]
g[n]
1
20
-1
Multiplication
g1[n]
g1[n]
-4
n
-1
(c)
-4
n
-1
n
g[n]
1
Multiplication
-10
10
-1
Solutions 2-14
n
Multiplication
M. J. Roberts - 7/12/03
(a)
(b)
g[n]
g[n]
1
1
-10
10
n
-4
-1
20
n
-1
(c)
(d)
g[n]
g[n]
1
1
-4
20
n
-10
-1
10
n
-1
22. Find the fundamental DT period and fundamental DT frequency of these functions.
(a)
2πn
g[ n ] = cos
10
N 0 = 10 , F0 =
1
10
(b)
πn
g[ n ] = cos
10
N 0 = 20 , F0 =
1
20
(c)
2πn
2πn
g[ n ] = cos
+ cos
5
7
N 0 = 35 , F0 =
1
35
(d)
g[ n ] = e
j
N 0 = 20 , F0 =
1
20
g[ n ] = e
−j
N 0 = 12 , F0 =
1
12
(e)
2πn
20
2πn
3
+e
−j
+e
2πn
20
−j
2πn
4
23. Graph the following functions and determine from the graphs the fundamental period of
each one (if it is periodic).
(a)
2πn
2πn
g[ n ] = 5 sin
+ 8 cos
4
6
(b)
14πn
7πn
g[ n ] = 5 sin
+ 8 cos
12
8
(c)
πn
−j
g[ n ] = Re e jπn + e 3
(d)
n
−j
g[ n ] = Re e jn + e 3
Solutions 2-15
M. J. Roberts - 7/12/03
(a)
(b)
g[n]
g[n]
12
12
-24
n
24
-24
n
24
-12
-12
N0 = 12
N0 = 24
(c)
(d)
g[n]
g[n]
2
2
24
-24
n
-24
n
24
-2
-2
N0 = 6
Not Periodic
24. Find the signal energy of these signals.
(a)
∞
x( t) = 2 rect ( t)
∫ 2 rect (t)
Ex =
−∞
(b)
dt = 4 ∫ dt = 4
−
∞
∫
−∞
10
A(u( t) − u( t − 10)) dt = A 2 ∫ dt = 10 A 2
2
0
∞
x( t) = u( t) − u(10 − t)
Ex =
∫ u(t) − u(10 − t)
−∞
(d)
2
dt =
0
∞
−∞
10
∫ dt + ∫ dt → ∞
x( t) = rect ( t) cos(2πt)
∞
Ex =
∫ rect (t) cos(2πt)
−∞
2
1
2
dt =
1
2
∫ cos (2πt)dt = 2 ∫ (1 + cos(4πt))dt
2
−
1
1
2
1
12
2
1
1
E x = ∫ dt + ∫ cos( 4πt) dt =
2
2 1
1
−
−
2
2
14
4244
3
=0
(e)
1
2
x( t) = A(u( t) − u( t − 10))
Ex =
(c)
2
1
2
x( t) = rect ( t) cos( 4πt)
Solutions 2-16
−
1
2
M. J. Roberts - 7/12/03
∞
Ex =
∫ rect (t) cos(4πt)
2
1
2
1
2
∫ cos (4πt)dt = 2 ∫ (1 + cos(8πt))dt
dt =
1
2
−∞
−
1
2
−
1
2
1
12
2
1
1
E x = ∫ dt + ∫ cos(8πt) dt =
2
2 1
1
−
−
2
2
14
4244
3
=0
(f)
x( t) = rect ( t) sin(2πt)
∞
Ex =
∫ rect (t) sin(2πt)
2
1
2
∫ sin (2πt)dt = 2 ∫ (1 − cos(4πt))dt
dt =
−∞
1
2
1
2
−
1
2
−
1
2
1
12
2
1
1
E x = ∫ dt − ∫ cos( 4πt) dt =
2
2 1
1
−
−
2
2
14
4244
3
=0
(g)
x[ n ] = A rect N 0 [ n ]
∞
E x = ∑ A rect N 0 [ n ] = A
−∞
(h)
x[ n ] = Aδ [ n ]
2
N0
2
∑ (1) = (2N
−N0
0
+ 1) A 2
x[ n ] = Aδ [ n ]
∞
0
E x = ∑ Aδ [ n ] = A 2 ∑ (1) = A 2
2
−∞
(i)
(j)
(k)
0
∞
∞
x[ n ] = comb N 0 [ n ]
E x = ∑ comb N 0 [ n ] =
x[ n ] = ramp[ n ]
E x = ∑ ramp[ n ] = ∑ n 2 → ∞
2
−∞
∞
−∞
2
∞
0
x[ n ] = ramp[ n ] − 2 ramp[ n − 4 ] + ramp[ n − 8]
Solutions 2-17
∑ (1) → ∞
−∞
n = mN 0
M. J. Roberts - 7/12/03
∞
E x = ∑ ramp[ n ] − 2 ramp[ n − 4 ] + ramp[ n − 8] = (0 2 + 12 + 2 2 + 32 + 4 2 + 32 + 2 2 + 12 + 0 2 )
2
−∞
E x = 1 + 4 + 9 + 16 + 9 + 4 + 1 = 44
25. Find the signal power of these signals.
x( t) = A
(a)
1
T →∞ T
x( t) = u( t)
(b)
Px = lim
∫
−
T
2
T
2 2
A
A dt = lim
T →∞ T
2
T
2
∫ u(t)
−
2
A2
T = A2
∫T dt = Tlim
→∞ T
−
2
T
2
1
1T 1
dt = lim
=
∫
T →∞ T
T →∞ T 2
2
0
dt = lim
T
2
x( t) = A cos(2πf 0 t + θ )
(c)
Px =
1
Px = lim
T →∞ T
T
2
1
T0
T0
2
A cos(2πf 0 t + θ ) dt =
∫
−
2
T0
2
2
A
T0
T0
2
∫ cos (2πf t + θ )dt
2
0
−
T0
2
T0
2
T0
A sin( 4πf 0 t + 2θ ) 2
A
1 + cos( 4πf 0 t + 2θ )) dt =
Px =
(
t +
∫
2T0 T0
2T0
4πf 0
− T0
−
2
2
2
2
T
T
sin 4πf 0 0 + 2θ sin −4πf 0 0 + 2θ
A2
A
2
2
=
T
Px =
+
−
2T0 0
4πf 0
4πf 0
2
14444444
24444444
3
=0
2
∞
(d)
x( t) = A ∑ rect ( t − 2 n )
n =−∞
1
Px =
T0
(e)
T0
2
∫
−
T0
2
∞
2
2 1
A
A ∑ rect ( t − 2 n ) dt =
2
n =−∞
1
2 2
A
∫ rect (t) dt = 2
−1
∞
1
x( t) = 2 A − + ∑ rect ( t − 2 n )
2 n =−∞
Solutions 2-18
2
A2
∫1 dt = 2
−
2
M. J. Roberts - 7/12/03
1
Px =
T0
T0
2
∫
T0
2
−
2
∞
1
4 A2
1
− + rect ( t) dt
2 A − + ∑ rect ( t − 2 n ) dt =
∫
2 −1 2
2 n =−∞
2
1
2
1
2
1
1
1
Px = 2 A ∫ − + rect ( t) dt = 4 A 2 ∫ − + rect ( t) dt
2
2
−1
0
2
12
2
2
1
1
2 1
Px = 4 A ∫ dt + ∫ − dt = A 2
2
2
1
0
2
(f)
(g)
(h)
x[ n ] = A
1
Px = lim
N →∞ 2 N
x[ n ] = u[ n ]
Px = lim
x[ n ] = A
N −1
∑
n =− N
N −1
1
N →∞ 2 N
∑
n =− N
A2
A = lim
N →∞ 2 N
2
N −1
A2
(1) = Nlim
(2N ) = A 2
∑
→∞ 2 N
n =− N
1
N →∞ 2 N
u[ n ] = lim
2
N −1
N →∞
n =0
∞
∑ rect [n − 8m]
m =−∞
2
N −1
2
∞
A2 7 ∞
1 0
8
Px =
A
rect
n
−
m
=
[
]
∑ ∑ 2
∑ ∑ rect 2[n − 8m]
2 N 0 n =− N 0 m =−∞
2 × 8 n =−8 m =−∞
Px =
(i)
(j)
1
N
∑ (1) = lim 2N = 2
2
2
7
10 A 2 5 A 2
A 2 −6
1
1
1
(
)
+
(
)
+
(
)
∑
∑ ∑= 6 = 2 × 8 = 8
2 × 8 n =−8
n =−2
n
2
1
1
comb N 0 [ n ] =
∑
N 0 n = N0
N0
x[ n ] = comb N 0 [ n ]
Px =
x[ n ] = ramp[ n ]
1
Px = lim
N →∞ 2 N
N −1
∑
n =− N
ramp[ n ]
2
1
= lim
N →∞ 2 N
N −1
∑n
2
→∞
n =0
26. Using MATLAB, plot the CT signal, x( t) = sin(2πt) , over the time range, 0 < t < 10 ,
with the following choices of the time resolution, ∆t , of the plot. Explain why the plots
look the way they do.
(a)
∆t =
1
24
(b)
∆t =
1
12
(c)
∆t =
1
4
(d)
∆t =
1
2
(e)
∆t =
2
3
(f)
∆t =
5
6
Solutions 2-19
M. J. Roberts - 7/12/03
(g)
∆t = 1
∆t = 1/24
∆t = 1/12
x(t)
x(t)
1
1
10
t
-1
10
t
-1
∆t = 1/4
∆t = 1/2
x(t)
x(t)
1
1
10
t
-1
10
t
-1
∆t = 2/3
∆t = 5/6
x(t)
x(t)
1
1
10
t
-1
10
t
-1
∆t = 1
x(t)
1
10
t
-1
27. Given the function definitions on the left, find the function values on the right.
(a)
(b)
π
g( t) = 100 sin 200πt +
4
π
π π
g(0.001) = 100 sin 200π × 0.001 + = 100 sin + = 98.77
5 4
4
g( t) = 13 − 4 t + 6 t 2
g(2) = 13 − 4 (2) + 6(2) = 29
2
(c)
g( t) = −5e −2 t e − j 2πt
π
−2
− j 2π
−
−j
1
4
= −5e 2 e 2 = − j 3.03
g = −5e 4 e
4
1
1
28. Sketch these CT exponential and trigonometric functions.
Solutions 2-20
1
M. J. Roberts - 7/12/03
(a)
g( t) = 10 cos(100πt)
(c)
g( t) = 5e
−
t
10
(b)
g( t) = 40 cos(60πt) + 20 sin(60πt)
(d)
g( t) = 5e 2 cos(2πt)
−
(a)
t
(b)
g(t)
g(t)
10
60
0.04
t
t
0.066667
-10
-60
(c)
g(t)
(d)
g(t)
5
5
8
t
50
t
-5
29. Sketch these CT singularity and related functions.
(a)
g( t) = 2 u( 4 − t)
(b)
g( t) = u(2 t)
(c)
g( t) = 5 sgn( t − 4 )
(d)
g( t) = 1 + sgn( 4 − t)
(e)
g( t) = 5 ramp( t + 1)
(f)
g( t) = −3 ramp(2 t)
(g)
g( t) = 2δ ( t + 3)
(h)
g( t) = 6δ ( 3t + 9)
(a)
(c)
(b)
g(t)
(d)
g(t)
g(t)
g(t)
5
2
1
t
4
t
(e)
g(t)
10
-1
(i)
1
1
t
(h)
g(t)
g(t)
2
2
t
-6
g( t) = −4δ (2( t − 1))
-3
(j)
t
4
-5
(g)
(f)
g(t)
2
t
4
t
-3
1
g( t) = 2 comb t −
2
Solutions 2-21
t
M. J. Roberts - 7/12/03
(k)
g( t) = 8 comb( 4 t)
(l)
t + 1
g( t) = −3 comb
2
(m)
t
g( t) = 2 rect
3
(n)
t + 1
g( t) = 4 rect
2
(o)
g( t) = tri( 4 t)
(p)
t − 1
g( t) = −6 tri
2
(i)
(k)
(j)
g(t)
1
2
2
t
...
-2
...
1
(m)
...
...
t
t
t
-2
(p)
g(t)
g(t)
-1
-1
4
t
1
4
-6
(q)
t
g( t) = 5 sinc
2
(r)
g( t) = − sinc(2( t + 1))
(s)
g( t) = −10 drcl( t, 4 )
(t)
t
g( t) = 5 drcl , 7
4
(r)
(q)
g(t)
g(t)
-1
5
t
t
-1
2
(s)
(t)
g(t)
g(t)
10
5
4
-10
3
...
-6
(o)
1
4
3
2
t
1
4
g(t)
2
g(t)
-1 1
...
(n)
g(t)
-3
2
(l)
g(t)
g(t)
t
-1
Solutions 2-22
8
t
1
3
t
t
M. J. Roberts - 7/12/03
( )
0.1rect t-3
4
-3rect(t-2)
3
2
5
2
0.1
t
(u)
(v)
-3
1
( )
-4tri 3+t
2
3 5
t
4sinc[5(t-3)]
4
(w)
-5 3 -1
t
(x)
-4
-1
1 2 3 4 5 6
4sinc(5t-3)
4
(y)
-1
1 2 3 4 5 6
t
30. Sketch these combinations of CT functions.
(a)
g( t) = u( t) − u( t − 1)
(b)
1
g( t) = rect t −
2
(c)
g( t) = −4 ramp( t) u( t − 2)
(d)
g( t) = sgn( t) sin(2πt)
(e)
g( t) = 5e
(f)
g( t) = rect ( t) cos(2πt)
(g)
g( t) = −6 rect ( t) cos( 3πt)
(h)
g( t) = rect ( t) tri( t)
−
t
4
u( t)
Solutions 2-23
t
M. J. Roberts - 7/12/03
g(t)
(a)
1
(c)
(b)
g(t)
(d)
g(t)
g(t)
1
2
t
1
(e)
t
-1
(g)
g(t)
1
-1
2
5
t
4
1
-16
(f)
g(t)
t
-8
t
1
4
1
2
t
-1
(h)
g(t)
6
-1
2
-6
1
g(t)
1
1
2
1
2
t
-1
2
t
1
2
(i)
1
g( t) = rect ( t) tri t +
2
(j)
1
1
g( t) = u t + ramp − t
2
2
(k)
g( t) = tri2 ( t)
(l)
g( t) = sinc 2 ( t)
(m)
g( t) = sinc( t)
(n)
g( t) =
(o)
1
1
g( t) = rect t + − rect t −
2
2
(p)
t
g( t) = ∫ δ (λ + 1) − 2δ (λ ) + δ (λ − 1) dλ
−∞
(i)
(k)
(j)
g(t)
1
1
2
t
t
1
2
t
-1
(o)
(p)
g(t)
g(t)
g(t)
1
1
1
1
1
-1
-1
1
1
-1
(n)
g(t)
g(t)
1
1
-1
2
(m)
(l)
g(t)
g(t)
1
-1
2
d
(tri(t))
dt
t
1
-1
t
-1
t
Solutions 2-24
1
-1
-1
t
1
t