Tải bản đầy đủ (.pdf) (43 trang)

11 introduction to taylor model methods neher

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (429.76 KB, 43 trang )

Interval Arithmetic
Taylor Models
Overestimation
Applications
Introduction to Taylor Model Methods
Markus Neher
Karlsruhe Institute of Technology
Universit¨at Karlsruhe (TH)
Research University - founded 1825
Institute for Applied and Numerical Mathematics
May 26, 2009
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Outline
1
Interval Arithmetic
2
Taylor Models
3
Overestimation
4
Applications
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Ranges and Inclusion Functions


Dependency
Wrapping Effect
Interval Arithmetic
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Ranges and Inclusion Functions
Dependency
Wrapping Effect
Why Interval Computations?
Inclusion of discretization or truncation errors in numerical
algorithms
Newton’s method
Global optimization
Numerical integration
.
Modelling of uncertain data
Bounding of roundoff errors
Moore (1966):
Matrix computations, ranges of functions, root-finding,
integrals, initial value problems for ODEs
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Ranges and Inclusion Functions
Dependency

Wrapping Effect
Ranges and Inclusion Functions
1
Range of f : D → E: Rg (f , D) := {f (x) | x ∈ D}
2
Inclusion function F : IR → IR of f : D ⊆ R → R:
F (x) ⊇ Rg (f , x) for all x ⊆ D
3
Examples:
x
1 + x
, 1 −
1
1 + x
, are inclusion functions for
f (x) =
x
1 + x
= 1 −
1
1 + x
e
x
:= [e
x
, e
x
] is an inclusion function for e
x
TMW 09 M. Neher Introduction to Taylor Model Methods

Interval Arithmetic
Taylor Models
Overestimation
Applications
Ranges and Inclusion Functions
Dependency
Wrapping Effect
Dependency
f (x) =
x
1 + x
= 1 −
1
1 + x
, x = [1, 2]:
x
1 + x
=
[1, 2]
[2, 3]
= [
1
3
, 1]
1 −
1
1 + x
= 1 −
1
[2, 3]

= 1 −[
1
3
,
1
2
] = [
1
2
,
2
3
] = Rg (f , x)
Reduced overestimation: centered forms, etc.
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Ranges and Inclusion Functions
Dependency
Wrapping Effect
Wrapping Effect
Overestimation: Enclose non-interval shaped sets by intervals
Example: f : (x, y ) →

2
2
(x + y, y − x) (Rotation)
Interval evaluation of f on x = ([−1, 1], [−1, 1]):

–2
–1
0
1
2
–2 –1 1 2
–2
–1
0
1
2
–2 –1 1 2
Rg (f , x), F (x) Rg

f
2
, x

, Rg (f , F(x)), F (F (x))
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Taylor Models
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models

Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Symbolic Enhancements of IA
Ultra-arithmetic (Kaucher & Miranker, 1984)
Multivariate Taylor forms (Eckmann, Koch & Wittwer, 1984)
Taylor models (Berz & Makino, 1990s–today)
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Taylor Models of Type I
x ⊂ R
m
, f : x → R, f ∈ C
n+1
, x
0
∈ x;
f (x) = p
n,f
(x − x
0
) + R
n,f
(x − x

0
), x ∈ x
(p
n,f
Taylor polynomial, R
n,f
remainder term)
Interval remainder bound of order n of f on x:
∀x ∈ x : R
n,f
(x − x
0
) ∈ i
n,f
Taylor model T
n,f
= (p
n,f
, i
n,f
) of order n of f :
∀x ∈ x: f (x) ∈ p
n,f
(x − x
0
) + i
n,f
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models

Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Taylor Models: Example
x = [−
1
2
,
1
2
], x
0
= 0:
e
x
= 1 + x +
1
2
x
2
+
1
6
x
3
e
ξ
, x, ξ ∈ x,
cos x = 1 −

1
2
x
2
+
1
6
x
3
sin ξ, x, ξ ∈ x,
T
2,e
x
= 1 + x +
1
2
x
2
+ [−0.035, 0.035], x ∈ x,
T
2,cos x
= 1 −
1
2
x
2
+ [−0.010, 0.010], x ∈ x
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models

Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
TM Arithmetic
Paradigm for TMA:
p
n,f
is processed symbolically to order n
Higher order terms are enclosed into the remainder interval
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Addition and Multiplication
T
n,f ±g
:= T
n,f
± T
n,g
:= (p
n,f
± p
n,g
, i
n,f

± i
n,g
),
T
n,α·f
:= α ·T
n,f
:= (α ·p
n,f
, α · i
n,f
) (α ∈ R),
T
n,f ·g
:= T
n,f
· T
n,g
:= (p
n,f ·g
, i
n,f ·g
),
where
p
n,f
(x − x
0
) · p
n,g

(x − x
0
) = p
n,f ·g
(x − x
0
) + p
e
(x − x
0
),
p
e
(x − x
0
) ∈ i
p
e
, p
n,f
(x − x
0
) ∈ i
p
n,f
, p
n,g
(x − x
0
) ∈ i

p
n,g
,
f (x) ·g(x) ∈ p
n,f ·g
(x − x
0
) + i
p
e
+ i
p
n,f
i
n,g
+ i
n,f

i
p
n,g
+ i
n,g

  
=:i
n,f ·g
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models

Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Numerical Example
Multiplication: x = [−
1
2
,
1
2
] x
0
:= 0, x ∈ x:
T
2,e
x
· T
2,cos x
⊆ (1 + x +
1
2
x
2
)(1 −
1
2
x
2
) + Rg


1 + x +
1
2
x
2

[−0.010, 0.010]
+Rg

1 −
1
2
x
2

[−0.035, 0.035] + [−0.035, 0.035] · [−0.010, 0.010]
⊆ (1 + x) + Rg


1
2
x
3

1
4
x
4


+ [−0.218, 0.218]
⊆ 1 + x + [−0.281, 0.281]
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
TM Arithmetic: Polynomials, Standard Functions
If T
n,f
= (p
n,f
, i
n,f
) is a Taylor model for f , then T
n,
P
a
ν
f
ν
is a Taylor model for

a
ν
f
ν
Standard functions: ϕ ∈ {exp, ln, sin, cos, . . .}

Taylor model for ϕ(f ):
Special treatment of the constant part in p
n,f
Evaluate p
n,ϕ
for the non-constant part of T
n,f
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Taylor Model for Exponential Function
x ∈ x, c := f (x
0
), h(x) := f (x) − c:
p
n,f
(x − x
0
) = p
n,h
(x − x
0
) + c, i
n,h
= i
n,f

exp

f (x)

= exp

c + h(x)

= exp(c) · exp

h(x)

= exp(c) ·

1 + h(x) +
1
2

h(x)

2
+ . . . +
1
n!

h(x)

n

+ exp(c) ·

1
(n + 1)!

h(x)

n+1
exp

θ · h(x)

  
, 0 < θ < 1
⊆ (Rg (h) + i)
n+1
exp

[0, 1] · (Rg (h) + i)

TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Taylor Model for Exponential Function
Numerical example: For x ∈ x = [−
1
2
,

1
2
],
cos x ∈ p
2,cos
(x) + i = 1 −
1
2
x
2
+ [−0.010, 0.010]
Composition: c = 1, h = −
1
2
x
2
, Rg (h) + i = [−0.135, 0.10] =: j
e
cos x
∈ e

1 + h + i +
1
2
(h + i)
2

+
e
6

j
3
exp([0, 1] · j)
⊆ e

1 −
1
2
x
2

+ e i +
e
2
j
2
+
e
6
j
3
exp([0, 1] · j)
= e

1 −
1
2
x
2


+ [−0.031, 0.053]
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Taylor Model Arithmetic
Standard Functions
Taylor Model for Other Standard Functions
x ∈ x, c := f (x
0
), h(x) := f (x) − c:
ln(f (x)) = ln(c + h(x)) = ln(c) + ln(1 +
1
c
h(x))
= ln c +
1
c
h(x) + ··· + (−1)
n+1
1
n
(
1
c
h(x))
n
+ (−1)
n+2

1
n + 1
(
1
c
h(x))
n+1
1
(1 + θh(x)/c)
n+1
, 0 < θ < 1
1
f (x)
=
1
c
1
1 + h(x)/c
=
1
c

1 −
h(x)
c
+ ··· + (−1)
n

h(x)
c


n

+ i
cos(f (x)) = cos c cos(h(x)) − sin c sin(h(x))
. . .
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Dependency
Wrapping
Overestimation
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Dependency
Wrapping
Overestimation
Sources of overestimation:
data errors
discretization or truncation erors
dependency problem: lack of IA to identify different
occurrences of the same variable
wrapping effect: enclosure of intermediate results into
intervals
TMW 09 M. Neher Introduction to Taylor Model Methods

Interval Arithmetic
Taylor Models
Overestimation
Applications
Dependency
Wrapping
IA vs. TMA: Dependency
Example: f (x) = x
2
+ cos x + sin x − e
x
, x ∈ x = [0, 1]
Direct IA:
f (x) ∈ F (x) = x
2
+ cos x + sin x − e
x
= [0, 1] + [cos 1, 1] + [0, sin 1] − [1, e] ≈ [−2.178, 1.842]
Mean Value Form:
f (x) ∈ f (
1
2
) + F

(x) ·(x −
1
2
)
= f (
1

2
) + (2 · x − sin x + cos x − e
x
) ·[−
1
2
,
1
2
]
⊆ [−1.552, 1.469]
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Dependency
Wrapping
IA vs. TMA: Dependency
TMA (Taylor models of order 3):
f (x) = x
2
+ cos x + sin x − e
x
∈ x
2
+ 1 −
x
2
2

+ i
1
+ x −
x
3
6
+ i
2
− 1 − x −
x
2
2

x
3
6
− i
3
= −
x
3
3
+ i
1
+ i
2
+ i
3
⊆ [−0.376, 0.082]
Range: Rg (f , x) = [−0.337, 0]

TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Dependency
Wrapping
IA vs. TMA: Wrapping
f (x, y) =

x + sin(
π
2
y)
cos(
π
2
x) − y

, A =
1

2

1 −1
1 1

x, y ∈ [0, 1]: A f , A (A f ) = ?
IA: Rg (f ) ⊆


[0, 2]
[−1, 1]

,
A f ⊆
1

2

[−1, 3]
[−1, 3]

, A (A f ) ⊆

[−2, 2]
[−1, 3]

TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models
Overestimation
Applications
Dependency
Wrapping
IA vs. TMA: Wrapping
TMA: T
4,f
=
0
B

@
x +
π
2
y −
π
3
y
3
48
+
[0,π
5
]
3840
1 − y −
π
2
x
2
8
+
π
4
x
4
384

[0,π
5

]
3840
1
C
A
,
A T
4,f
=
1

2
0
B
@
−1 + x + (1 +
π
2
)y +
π
2
x
2
8

π
3
y
3
48


π
4
x
4
384
+
[0,π
5
]
1920
1 + x + (
π
2
− 1)y −
π
2
x
2
8

π
3
y
3
48
+
π
4
x

4
384
+
[−π
5

5
]
3840
1
C
A
,
A (A T
4,f
) =
0
B
@
−1 + y +
π
2
x
2
8

π
4
x
4

384
+
[−π
5
,3π
5
]
7680
x +
π
2
y −
π
3
y
3
48
+
[−π
5
,3π
5
]
7680
1
C
A
TMW 09 M. Neher Introduction to Taylor Model Methods
Interval Arithmetic
Taylor Models

Overestimation
Applications
Dependency
Wrapping
IA vs. TMA: Wrapping
TMW 09 M. Neher Introduction to Taylor Model Methods

×