Tải bản đầy đủ (.pdf) (52 trang)

Bước đầu thiết kế và chế tạo máy luận nhiệt Trermocycles - PCR

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1014.87 KB, 52 trang )



1


Phần 1. Mở đầu

1.1. Đặt vấn đề
Hiện nay, máy luân nhiệt (Thermocycles - PCR) được sử dụng rộng rãi tại các
trường Đại học, phòng thí nghiệm, bệnh viện, viện nghiên cứu… Máy PCR là công cụ
không thể thiếu đối với các thí nghiệm liên quan đến khuếch đại đoạn DNA.
Những máy PCR đang sử dụng tất cả đều nhập từ nước ngoài với giá thành cao,
hơn nữa trong quá trình sử dụng gặp hư hỏng chi phí sửa chữa khá cao; đôi khi trong
nước không sửa chữa được phải ra nước ngoài, tốn thời gian và chi phí vận chuyển.
Với những thiết bị đắt tiền như vậy, sinh viên khó tiếp cận thực hiện các thí
nghiệm của mình, chỉ có thể kiến tập hoặc nhiều sinh viên thực tập trên một máy. Số
lượng máy PCR hiện nay tại các trường đại học còn khiêm tốn, trong khi lượng sinh
viên ngày một nhiều. Do vậy, việc chế tạo máy PCR trong nước với giá thành hạ rất
cần thiết.
Khi chưa có máy PCR, ta cũng có thể thực hiện khuếch đại đoạn DNA với các
hộp chứa nước ở nhiệt độ khác nhau. Tuy nhiên, việc làm này tốn nhiều thời gian và
công sức, độ tin cậy không cao, không thích hợp khi lượng mẫu cần phân tích nhiều.
Máy PCR lúc đầu mới ra dùng dầu, còn có nhiều nhược điểm như: hút DNA ra
khó dễ bị lẫn dầu, thu được lượng DNA sạch ít hơn dự kiến v.v…
Để khắc phục những khuyết điểm đó, dòng máy thứ hai ra đời dùng nguyên lý
điện nhiệt học để chuyển tải nhiệt có thêm nắp chống ngưng tụ, khắc phục được những
khuyết điểm trên.
Đề tài nghiên cứu này, được thực hiện với mục đích hạ thấp giá thành của máy,
kiểm tra độ hoạt động ổn định của máy và kiểm tra chạy phản ứng PCR.

1.2. Yêu cầu


Máy được thiết kế tiện dụng, dễ nâng cấp, sử dụng, sửa chữa và bảo trì. Có độ bền
cao, hoạt động ổn định, cho kết quả trong việc chạy PCR.
Khoảng nhiệt độ 4
o
C – 95
o
C và không ngưng tụ hơi nước trên nắp ống eppendorf
trong khoảng nhiệt độ này.
Sai số nhiệt độ nằm trong giới hạn cho phép.


2


Chạy chương trình trực tiếp không lưu vào bộ nhớ.

1.2. Giới hạn của đề tài
Đây là máy lần đầu chế tạo tại Việt Nam, thời gian chế tạo có hạn vì vậy độ tin
cậy có thể không cao bằng máy nhập ngoại hiện đại. Vì vậy, cần có thời gian chạy thử
để tối ưu từng bộ phận của máy và đưa ra tiêu chuẩn cụ thể cho từng bộ phận và linh
kiện của máy.



























3


Phần 2. Tổng quan tài liệu

2.1. Nguyên lý phản ứng PCR
PCR là quá trình khuếch đại một đoạn trình tự DNA đặc hiệu in vitro do sự xúc
tác của enzyme DNA polymerase. Sự khuếch đại này được thực hiện nhờ các chu trình
nhiệt lặp lại (có thể đến 35 lần) gồm đun nóng (khoảng 95
o
C), làm nguội (37 – 65
o
C)

và ủ lâu ở khoảng 72
o
C. Trong dung dịch có các primer (đoạn mồi), mỗi loại primer sẽ
bắt cặp bổ sung với mạch đơn tương ứng.
Nhờ vậy 1 đoạn mạch kép DNA, sau một chu kỳ phản ứng do DNA polymerase
thực hiện, thành hai mạch DNA kép và có thể thực hiện chu trình khuếch đại mới : 2
thành 4 và 4 thành 8 theo cấp số nhân với công bội là 2 theo lý thuyết.
Phản ứng được thực hiện trong ống nghiệm plastic nhỏ (eppendorff), có DNA
khuôn mẫu, primer và DNA polymerase, được gắn vào hệ thống nung nóng có điều
chỉnh thành chu kỳ nung nóng và làm nguội theo chương trình gọi là thermocycler,
đây chính là máy PCR.

2.2. Các thành phần của phản ứng
Trong các ống nghiệm plastic nhỏ có các thành phần chủ yếu sau:
 Khuôn mẫu (Template) tức là đoạn DNA cần khuyếch đại.
 Các oligonucleotide primer (các mồi) còn gọi là amplifier (nhân tố khuyếch đại),
oligo hay primer.
 DNA polymerase chịu nhiệt.
 dNTP : các loại nucleotide triphosphate.
 Dung dịch đệm (buffer) tích hợp và MgCl
2
.
 Nước

2.2.1. Các enzyme polymerase chịu nhiệt
Lúc đầu, các enzyme polymerase bình thường được sử dụng, nhưng hiệu quả kém
do phải chờ hạ nhiệt độ xuống thấp (30 – 50
o
C). Hiện nay, hầu như chỉ sử dụng
enzyme polymerase chịu nhiệt là Taq polymerase bắt nguồn từ vi khuẩn Thermophilus



4


aquaticus và một số khác cải biến từ chủng này. Phản ứng PCR có thể thực hiện cả với
RNA.

2.2.2. DNA khuôn mẫu
Độ nhạy cao là một đặc tính hấp dẫn của PCR. Sự khuếch đại có thể thực hiện với
một phân tử ban đầu được nhân lên. Yêu cầu tối thiểu này đối với đoạn DNA mẫu
tương phản với kĩ thuật tạo dòng. Cũng do sự nhạy cảm cao này mà kết quả PCR dễ bị
sai nếu bị nhiễm DNA khác. Dễ bị nhiễm tạp là nhược điểm lớn của PCR.
Ưu thế khác đối với mẫu là không cần sự tinh sạch cao. Nhờ vậy có thể sử dụng
PCR với các vết máu, mẫu khảo cổ, DNA cổ xưa hoặc vi khuẩn đã bị hấp khử trùng.
Tuy vậy, trong nhiều trường hợp cần chuẩn bị mẫu tốt để kết quả chắc chắn hơn.
2.2.3. Primer
Primer là thành phần quan trọng trong PCR. Primer được tổng hợp hóa học trên
chất nền rắn được sử dụng trong máy tổng hợp oligonucleotide (oligonucleotide
synthestizer). Các primer có vai trò quan trọng đối với thành công của PCR.
Trình tự primer phải có kích thước hợp lý, khoảng 18 – 25 nucleotide. Việc lựa
chọn trình tự primer cũng có vai trò quan trọng. Cần chọn thế nào để tránh sự bắt cặp
bổ sung bên trong hoặc bên ngoài phân tử không như ý và tránh có tỉ lệ G + C cao.

2.3. Nguyên lý hoạt động của máy PCR








Hình 2.1 Mô hình hoạt động của máy PCR
Sensor nhiệt cảm ứng nhiệt độ truyền tín hiệu về cổng chuyển đổi được tích hợp
trên chip, tín hiệu điện được chuyển sang dạng số. Vi điều khiển nhận tín hiệu số này
và xử lý theo chương trình được lập trình. Kết quả chip xuất ra dạng số và được
Bộ điều khiển
Cảm biến
Bộ công suất
Nguồn cung cấp
Te, quạt, điện trở


5


chuyển thành dạng tương tự (Analog) là tín hiệu điều khiển bộ khuếch đại, dựa vào đó
mà bộ khuếch đại cung cấp điện áp và đảo cực cho thermoelectric module, quạt, điện
trở.

2.4. Nguyên lý Peltier
Năm 1834, nhà khoa học Pháp Jean Charles Althanase Peltier đã phát hiện khi
điện áp một chiều khi thông qua một mạch điện tạo bởi hai mạch điện dẫn điện khác
nhau, điểm nối của nó sẽ sinh ra một hiện tượng hút nhiệt. Hiện tượng này gọi là hiệu
ứng Peltier (Hoàng Oanh, 2002, trang 30).

2.5. Thermoelectric module
2.5.1. Giới thiệu
Thermoelectric module là ứng dụng cụ thể trong kỹ thuật của hiệu ứng Peltier.


Hình 2.2 Thermoelectric module
Các vật liệu bán dẫn dùng để làm lạnh có rất nhiều loại chẳng hạn như: PbTe,
ZnSb, SiGe, AgSbTe v.v… Vật liệu bán dẫn có hiệu suất cao hay thấp phụ thuộc vào
tham số chính, được đánh giá bởi hệ số Z, Z càng lớn thì hiệu suất càng cao.
Z = a
2
/(k.ρ) (2.1)
Trong công thức: Z là hệ số ưu trị
a là điện thế điện động sai lệch nhiệt độ
k là dẫn xuất nhiệt
ρ là điện trở suất


6


Hiện nay, nghiên cứu sử dụng nhiều nhất là các vật liệu bán dẫn P-Bi
2
Te
3
/Sb
2
Te
3
,
N-Bi
2
Te
3
/Bi

2
Se
3
là hợp kim với 3 nguyên tố chuẩn. Chúng có hệ số ưu trị tương đối
tốt, hệ số ưu trị vật liệu bán dẫn kiểu P có hệ số Zp > 3,5x10
-3
k
-1
. Các hệ số ưu trị của
vật liệu bán dẫn kiểu N có hệ số Zn > 3x10
-3
k
-1
nếu làm cho việc làm lạnh bán dẫn về
mặt kinh tế đạt tới mức độ tương đương như làm lạnh kiểu máy nén, hệ số ưu trị có thể
đạt tới 13x10
-3
k
-1
(Hoàng Oanh, 2002, trang 30)

2.5.2. Cấu tạo và nguyên lý hoạt động
2.5.2.1. Cấu tạo
Thermoelectric module, cấu tạo bởi hai loại bán dẫn loại P và N nối tiếp nhau bởi
các cầu nối thường được làm bằng kim loại đồng (Cu) có vai trò dẫn điện và chuyển
tải nhiệt. Để module hoạt động ổn định và độ bền cao, đòi hỏi cách điện tốt và chống
hơi nước ngưng tụ bên trong thermoelectric module trong quá trình làm lạnh. Vì vậy,
nhà sản xuất thường dùng vật liệu ceramic cách điện hai mặt. Ceramic này có đặc tính
cách điện, dẫn nhiệt tốt và có độ bền cơ học cao. Muốn cho thermoelectric dẫn nhiệt
tốt, hai bề mặt phải phẳng và nhẵn, thường phủ thêm một lớp mỏng silicon làm tăng

thêm vai trò dẫn nhiệt và chống hơi nước ngưng tụ bên trong.
Bên trong thermoelectric module các bán dẫn P và N nối tiếp nhau, có cùng chiều
truyền nhiệt tùy vào mục đích sử dụng mà nhà sản xuất tạo ra nhiều thermoelectric có
số lượng cặp PN khác nhau. Số lượng PN càng nhiều độ chênh lệch nhiệt độ trên bề
mặt càng thấp và chịu được lực nén cao.

Hình 2.3 Cấu tạo Thermoelectric module




7


2.5.2.2. Nguyên lý hoạt động
Hoạt động dựa trên nguyên lý Peltier. Khi có dòng điện một chiều chạy qua, tùy
theo bán dẫn loại P hay N mà có sự truyền tải nhiệt khác nhau so với chiều dòng điện
đi qua. Đối với bán dẫn loại N sự truyền tải nhiệt ngược chiều với chiều dòng điện, đối
với bán dẫn loại P truyền tải nhiệt cùng với chiều dòng điện. Vì vậy, thermoelectric
một mặt nóng và một mặt lạnh khi có dòng điện một chiều đi qua (hình 2.4).

Hình 2.4 Sự truyền tải nhiệt

Công suất truyền tải nhiệt của thermoelectric module cao hay thấp phụ thuộc vào
vật liệu bán dẫn, dòng điện đi qua và độ chênh lệch nhiệt độ hai bề mặt của
thermoelectric. Nếu dòng điện quá thấp thì truyền tải nhiệt kém, nếu quá cao truyền tải
nhiệt cũng giảm do dòng điện có tác dụng sinh nhiệt theo định luật Jun-Lenxơ. Tùy
theo vật liệu cấu tạo và kết cấu của thermoelectric mà ΔT
Max
khác nhau. Nếu chênh

lệch nhiệt độ hai bề mặt của vật liệu bán dẫn vượt qua giới hạn này thì truyền tải nhiệt
bằng không, xét theo tác dụng truyền tải nhiệt của thermoelectric. Mỗi loại
thermoelectric chịu được nhiệt độ nóng trong giới hạn nếu nhiệt độ lớn hơn dẫn đến hư
hỏng. Vì vậy, dùng tản nhiệt cho mặt nóng của thermoelectric là cần thiết cho quá
trình làm lạnh, hoặc tăng nhanh làm nóng.
Máy PCR có đặc tính thay đổi nhiệt độ theo chu kỳ liên tục. Đòi hỏi
thermoelectric dùng cho máy phải thích hợp. Thermoelectric thông thường dùng cho
làm lạnh hoặc làm nóng không đáp ứng cho sự thay đổi nhiệt độ theo chu kỳ. Nếu


8


dùng loại này cho máy PCR, máy sẽ hoạt động không ổn định sau một thời gian, do
điện trở của thermoelectric thay đổi lớn (www. ferotech.com).

2.6. Bán dẫn loại N và bán dẫn loại P
Chất bán dẫn thuần khiết nếu được pha thêm tạp chất, chẳng hạn như Si được pha
thêm tạp chất nhóm 5 là Phosphore hoặc Asenic đối với Ge. Với hàm lượng thích hợp
sao cho các nguyên tử tạp chất này chiếm chỗ một trong những nút của mạng tinh thể
thì cơ chế dẫn điện sẽ thay đổi. Nguyên tử tạp chất (chẳng hạn như Phosphore), vỏ
ngoài cùng có 5 điện tử; trong đó 4 điện tử tham gia liên kết hóa trị với các nguyên tử
lân cận, điện tử thứ năm liên kết yếu hơn với hạt nhân và các nguyên tử xung quanh.
cho nên, chỉ cần cung cấp một năng lượng nhỏ (nhờ nhiệt độ, ánh sáng …), điện tử này
sẽ thoát khỏi trạng thái ràng buộc, trở thành hạt dẫn tự do. Nguyên tử tạp chất khi đó
bị ion hóa và trở thành một ion dương. Nếu có điện trường đặt vào, các hạt dẫn tự do
trên sẽ chuyển động có hướng, tạo nên dòng điện.
Như vậy tạp chất nhóm 5 cung cấp điện tử cho bán dẫn ban đầu nên được gọi là
tạp chất cho. Chất bán dẫn có pha tạp chất cho gọi là bán dẫn loại N.
Trường hợp tạp chất pha vào thuộc nhóm 3 của bảng tuần hoàn các nguyên tố, do

lớp vỏ ngoài cùng của nguyên tử tạp chất chỉ có 3 điện tử khi tham gia vào mạng tinh
thể của chất cơ bản chỉ tạo nên 3 mối liên kết hoàn chỉnh, còn mối liên kết thứ tư bị bỏ
hở. Khi có kích thích nhỏ là một trong những điện tử của các mối liên kết hoàn chỉnh
bên cạnh sẽ đến thế vào liên kết bỏ hở nói trên. Nguyên tử tạp chất lúc đó sẽ trở thành
một ion âm. Tại mối liên kết mà điện tử vừa đi khỏi sẽ dư ra một điện tích dương,
nghĩa là xuất hiện một lỗ trống. Nếu có điện trường đặt vào, các lỗ trống này sẽ tham
gia dẫn điện.
Như vậy, tạp chất nhóm 3 tiếp nhận điện tử từ chất cơ bản để làm sản sinh các lỗ
trống nên được gọi là tạp chất nhận. Chất bán dẫn có pha tạp chất nhóm 3 như trên gọi
là bán dẫn loại P.
Như vậy, tùy theo tạp chất pha vào thuộc nhóm 3 hay nhóm 5 (xét với Si hoặc Ge)
mà chất bán dẫn thuần trở thành bán dẫn P hay N. Hạt dẫn đa số tương ứng là lỗ trống
hoặc điện tử. Ở trạng thái cân bằng, mỗi chất bán dẫn đều trung hòa điện, nghĩa là tổng


9


điện tích dương bằng tổng điện tích âm trong thể tích (Dương Vũ Văn, 2002, trang
43).

p-type n-type Si 100%, 0
0
K
Hình 2.5 Điện tích và lỗ trống của bán dẫn
2.7. Sensor nhiệt
Để đo nhiệt độ ta có thể dùng nhiều phương pháp khác nhau, dùng sensor nhiệt là
thích hợp nhất trong điều khiển, chúng có nhiều loại khác nhau. Để đo được nhiệt độ
chính xác cao và gia tốc biến thiên nhiệt nhanh, hai loại sensor nhiệt là „cặp nhiệt điện‟
và „điện trở palatin‟ đáp ứng tốt.


2.7.1. Nhiệt điện trở Platin
Platin là vật liệu cho nhiệt điện trở được dùng rộng rãi với dải đo nhiệt từ -200 đến
850
o
C. Nhiệt điện trở platin có nhiều loại: Pt – 100 là trị số điện trở ở định mức 0
o
C là
100Ω, Pt – 500, Pt – 1000. Các loại Pt – 500, Pt – 1000 có hệ số nhiệt độ lớn hơn. Do
đó, độ nhạy lớn hơn (điện trở thay đổi mạnh theo nhiệt độ). Với Pt – 1000, sự thay đổi
nhiệt khoảng chừng 4 Ω/
0
K.
Các tính chất của nhiệt điện trở này được qui định theo tiêu chuẩn quốc tế DIN
IEC 751. Theo tiêu chuẩn này, dải đo nhiệt độ của điện trở platin từ -200 đến 850
o
C.
Cho dải đo đầu tiên từ -200 đến 0
o
C ta có đa thức cấp ba:
R(t) = R
0
(1 + At + Bt
2
+ C[t-100
o
C

].t
3

) (2.2)
Cho dải đo từ 0 đến 850
o
C ta có đa thức cấp hai:
R(t) = R
0
(1 + At + Bt
2
) (2.3)
Các hệ số có giá trị như sau:
A = 3,90802 . 10
-3

0
C
-1
B = -5,802 . 10
-7

0
C
-2
C = -4,2735 . 10
-12

0
C
-3



10


Pt 100
R
0
là trị số điện trở định mức ở 0
o
C.
Ngoài ra, theo tiêu chuẩn IEC 751 còn xác định một trị số đặc trưng nữa, đó là hệ
số nhiệt độ trung bình giữa 0 và 100
o
C. Đó là tỉ lệ giữa sự thay đổi điện trở ở 0 và
100
o
C với điện trở định mức R
0
.
α = (R
100
– R
0
)/R
0
dt = 3,850.10
-3 0
C
-1
(2.4)
Trị số α của nhiệt điện trở platin theo DIN có sự khác biệt với trị số này. Theo tiêu

chuẩn DIN, vật liệu platin dùng làm nhiệt điện trở có pha tạp. Do đó khi bị các tạp chất
khác thẩm thấu trong quá trình sử dụng sự thay đổi trị số điện của nó ít hơn so với
platin ròng nhờ thế nó tự ổn định lâu dài theo thời gian.










Hình 2.6 Đặc tuyến điện trở Pt100

2.7.1.1. Cách tính nhiệt độ theo điện trở
Trong khoảng nhiệt độ trên 0
o
C nhiệt độ được tính theo sự thay đổi điện trở platin
theo DIN IEC 751 như sau:
t = -R
0
.A + [(R
0
.A)
2
– 4R
0
.B(R
0

- R)]
1/2
(2.5)
R = điện trở đo được theo Ohm
t = nhiệt độ được tính theo
o
C
R
0
, A, B = thông số theo DIN IEC 751



400

350

300

250

200

150

100
0 100 200 300 400 500 600 700 800 900
Nhiệt độ (
0
C)

Điện trở (Ω)


11



2.7.1.2. Sai số cho phép
Khi tính đến sai số, tiêu chuẩn DIN IEC 751 phân biệt hai đẳng cấp: A và B.
Đẳng cấp A có giá trị cho nhiệt độ từ -200 đến 650
o
C cho các máy đo nhiệt độ
dùng 3 hay 4 dây đo. Đẳng cấp B có giá trị cho toàn thang từ -200 đến 850
o
C.
Đẳng cấp A: t = ± (0.15 + 0.002 . t)
Đẳng cấp B: t = ± (0.30 + 0.005 . t)
t = nhiệt độ với
o
C (không có dấu ±)
Ngoài ra, còn nhiều đẳng cấp khác cho đo đạc chính xác hơn hay không chính xác
lắm, rẻ tiền ta còn có các đẳng cấp: B 1/3 DIN, B ½ DIN, B2 DIN, B5 DIN.

2.7.1.3. Cấu trúc của cảm biến nhiệt platin
 Nhiệt điện trở với vỏ gốm:
Sợi platine được giữ chặt bên trong ống gốm sứ với bột nhôm oxit. Dải đo từ
200
o
C đến 800
o

C
 Nhiệt điện trở với vỏ thuỷ tinh:
Loại này có độ bền cơ học và độ nhạy cao. Dải đo từ -200
o
C đến 400
o
C.
Được dùng trong môi trường hóa chất có độ ăn mòn cao.
 Nhiệt điện trở với vỏ nhựa:
Giữa hai lớp polyamid dây platine có đường kính khoảng 30 μm được dán
kín. Với cấu trúc mảng, cảm biến loại này được dùng để đo nhiệt độ bề mặt. Dải
đo nhiệt độ từ -80
o
C đến 230
o
C.
 Nhiệt điện trở với kỹ thuật màng mỏng:
Trên một nền oxit nhôm, một lớp platin dày khoảng 1 μm được phủ lên bằng
phương pháp phun ion hay bốc hơi chân không. Sau đó, với phương pháp quang
khắc hay tia laser, lớp platin có hình một đường gấp khúc và được chuẩn hoá cũng
bằng tia laser. Sau đó, lớp platin được phủ bởi một lớp thủy tinh. Dải đo nhiệt độ
từ -50 đến 400
o
C. Các nhiệt điện trở với kỹ thuật màng mỏng đều có thời gian hồi
áp rất bé (khoảng 1 giây) và quán tính nhiệt bé. Với kỹ thuật màng mỏng, nhiệt
điện trở có sự ổn định lâu dài.



12



2.7.1.4. Kỹ thuật nối dây
Nhiệt điện trở thay đổi điện trở theo nhiệt độ với một dòng điện không đổi đi qua
điện trở ta có điện thế đo được U = I.R.
Để cảm biến không bị nóng lên qua phép đo, dòng điện cần phải nhỏ khoảng 1mA
(đối với Pt100) điện thế này cần được đưa đến máy đo qua dây đo, với sai số thấp
nhất. Ta có 3 kỹ thuật nối dây đo:
- Kỹ thuật 2 dây:

Hình 2.7 Kỹ thuật nối 2 dây
Với kỹ thuật nối 2 dây phép đo có sai số lớn do điện trở của dây dẫn và sự thay
đổi của chúng theo nhiệt độ.
- Kỹ thuật 3 dây:

Hình 2.8 Kỹ thuật nối 3 dây
Với cách nối này hai mạch đo được hình thành, một trong hai được dùng để làm
mạch chuẩn. Với kỹ thuật 3 dây, sai số phép đo do nhiệt độ và điện trở dây dẫn không
còn. Tuy nhiên 3 dây đo phải có cùng trị số kỹ thuật và cùng một nhiệt độ.
- Kỹ thuật 4 dây:

Hình2.9 Kỹ thuật nối 4 dây


13


Với kỹ thuật 4 dây, người ta đạt kết quả đo tốt nhất. Hai dây được dùng để cho
một dòng điện không đổi đi qua, hai dây khác được dùng làm dây đo điện thế trên
nhiệt điện trở (Dương Minh Trí,2001, trang 14 - 23).


2.7.2. Cặp nhiệt điện
Những nguyên tắc hay lý thuyết về hiệu ứng nhiệt điện được xây dựng bởi nhiều
nhà khoa học như Thomas Johann Seebeck (1821), Jean Charles Althanase Peltier
(1843), William Thomson, Lord Kelvin … và trải qua một thời gian dài.
Hiệu ứng Seebeck mô tả sự chuyển đổi năng lượng nhiệt sang năng lượng điện với
sự xuất hiện một dòng điện. Do đó, việc đo nhiệt độ được chuyển thành đo điện.
Trong thực tế, một cặp nhiệt điện là hai dây kim loại khác nhau được nối chung
với nhau ở hai đầu. Do sự khác nhau giữa năng lượng liên kết của electron và các
nguyên tử kim loại khác nhau, ta có một điện áp nhiệt. Điện áp nhiệt này có thể tạo
nên một dòng điện khi hai đầu còn lại của kim loại được nối với nhau. Trong mạch
điện khép kín này, ta có một dòng điện gây nên bởi hiệu ứng Seebeck. Do đầu nối thứ
hai của cặp nhiệt điện một điện áp nhiệt cũng phát sinh. Nếu hai đầu có nhiệt độ giống
nhau, dòng điện bằng 0. Như thế, một cặp nhiệt điện chỉ có thể cho ta một điện thế khi
có sự chênh lệch về nhiệt độ. (Dương Minh trí, trang 61)

2.8. Cấu trúc và đặc tính của chip AT90S8535
Chip AT90S8535 của hãng ATMEL có những đặc điểm sau:
 Điện áp nguồn nuôi: 4V- 6V.
 Có 118 lệnh mạnh hầu hết được thực hiện trong 1 chu kỳ xung nhịp.
 RAM flash 8 kbyte lập trình được trong hệ thống. Chịu được 100000 lần
ghi/xóa.
 Bộ nhớ EEPROM 512 byte. Chịu được 100000 lần ghi/xóa.
 Bộ nhớ SRAM bên trong 512 byte.
 Bộ biến đổi ADC 8 kênh, 10 bit.
 32 đường vào/ra lập trình được.
 32 thanh ghi đa năng.
 Bộ định thời gian watchdog lập trình được với bộ dao động bên trong.



14



Hình 2.10 Sơ đồ chân của AT90S8535.
Chức năng các chân:
 VCC: điện áp nguồn nuôi
 GND: đất
 Cổng A (PA0 đến PA7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên
nguồn dương bên trong. Cổng A cung cấp các đường địa chỉ dữ liệu vào ra
theo kiểu hợp kênh khi dùng bộ nhớ ở bên ngoài.
 Ngoài ra cổng A còn thêm chức năng chuyển đổi từ dạng tỷ biến sang dạng
số.
 Cổng B (PB0 đến PB7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên
nguồn dương bên trong. Cổng B cung cấp các chức năng ứng với các tính
năng đặc biệt của AT90S8535.
 Cổng C (PC0 đến PC7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên
nguồn dương bên trong. Cổng C cung cấp các địa chỉ lối ra khi dùng bộ nhớ
ở bên ngoài.
 Cổng D (PD0 đến PD7): cổng vào/ra hai hướng 8 bit, có điện trở nối lên
nguồn dương bên trong. Cổng D cung cấp các chức năng ứng với các tính
năng đặc biệt của AT90S8535.
 RESET: lối vào được đặt lại
 XTAL1: lối vào bộ khuếch đại đảo và lối vào mạch tạo xung nhịp bên trong
 XTAL2: lối vào bộ khuếch đại đảo
 ICP: là chân vào cho chức năng bắt tính hiệu vào bộ định thời/đếm 1.
 OC1B: là chân ra cho chức năng so sánh lối ra bộ định thời/đếm 1.


15



 ALE: là chân tín hiệu cho phép chốt địa chỉ được dùng khi truy nhập bộ nhớ
ngoài. (www.atmel.com)

2.9. Ngôn ngữ Bascom
Ngôn ngữ Bascom được viết trên ngôn ngữ C
++
của hãng Microsoft, có những ưu
điểm vượt trội so với Assem, nó gần với ngôn ngữ người vì vậy dễ lập trình và kiểm
soát lỗi, giúp cho chương trình viết đơn giản và dễ hiểu. Bascom còn có trợ giúp thêm
chạy chương trình mô phỏng, trình biên dịch…

2.10. Mạch điện
Mạch điện được thiết kế trên máy tính bởi phần mềm Orcad, mạch được thiết kế
theo dạng board chức năng, mỗi board đảm nhận một chức năng riêng nên dễ kiểm tra,
sửa chữa và nâng cấp.

2.11. Ứng dụng của PCR
2.11.1. PCR định lượng
Việc áp dụng PCR số lượng luôn luôn đòi hỏi phải kèm theo một hồ sơ (protocol
PCR) để giảm đến mức thấp nhất những yếu tố ảnh hưởng đến quá trình và kích hoạt.
PCR phải duy trì trong 20 vòng để tạo kích hoạt mạch thẳng ( www.ykhoa.net).

2.11.2. PCR sản xuất đột biến (PCR mutagenesis)
Có thể dùng kỹ thuật PCR để xóa đi hoặc cấy ghép một đột biến vào phân tử DNA
mục tiêu. Kỹ thuật này giúp nghiên cứu cấu trúc chức năng tương lai trong các protein
cuối cùng.
Sự xóa đi có thể dùng primer nối với vòng cần phải xóa đi và tiến hành vị trí giới
hạn trong quá trình tái tổ hợp với primer thứ hai.


2.11.3. PCR ứng dụng trong cloning tái tổ hợp (cloning of recombinant)
Nếu trước đây, muốn đưa một đoạn gene vào plasmid để chuyển thể plasmid này
vào một vi khuẩn thì công việc này đòi hỏi phải tốn nhiều thời gian và công sức. Trước
hết là phải có một số lượng tế bào đích để từ đó người ta ly trích toàn bộ bộ gene


16


(genomic DNA). Sau đó, dùng nhiều loại enzyme cắt giới hạn để cắt bộ gene thành
nhiều đoạn có kích thước khác nhau, điện di trên gel, dùng kỹ thuật Southern blotting
và phát hiện đoạn gen muốn tìm bằng kỹ thuật lai với đoạn dò đặc hiệu. Từ kết quả đó,
có thể định vị và trích được đoạn gen muốn tìm từ bản gel đã điện di để gắn vào
plasmid rồi đưa vào vi khuẩn mang. Tuy nhiên, công việc như vậy cũng chưa đã hoàn
tất, vì chưa chắc chúng ta đã gắn đúng đoạn gen mong muốn vào plasmid vì trên bản
thạch chúng ta không thể chỉ lấy đúng đoạn gen đã định vị mà không lẫn các đoạn
gene khác. Do vậy, phải chọn đúng vi khuẩn mang plasmid có gene mong muốn.
Chúng ta gọi toàn bộ kỹ thuật này là clone tái tổ hợp, có khi phải thực hiện trong nhiều
tháng, thậm chí nhiều năm, mà nhiều khi chưa chắc đã thành công. Ngày nay, các nhà
nghiên cứu có thể dùng kỹ thuật PCR trong thí nghiệm này. Trước hết là từ một vài tế
bào đích ban đầu (không cần phải có nhiều tế bào đích như kỹ thuật cũ), có thể sử
dụng cặp mồi đặc hiệu để tổng hợp và khuếch đại đoạn gen muốn tìm thành hàng tỷ
bản sao giống hệt nhau rồi đưa vào plasmid (không cần phải dùng một lượng lớn tế
bào đích để ly trích được bộ gene và phân tích bằng restriction enzyme, rồi làm
Southern blotting...). Lúc này plasmid mang đúng đoạn gen đích, không thể có lẫn lộn
các đoạn gene khác. Vì vậy sau khi chuyển thể plasmid vào vi khuẩn mang, không cần
phải làm kỹ thuật chọn dòng nữa. Như vậy, chúng ta thấy cũng cùng một mục đích,
nhưng với PCR, công việc đã gọn lại rất nhiều ( www.ykhoa.net).


2.11.4. PCR nhân bản đoạn DNA mong muốn
Với các kỹ thuật sinh học phân tử cổ điển, để có được một đoạn DNA mong muốn
nào đó, nhà nghiên cứu phải có trong tay một số lượng lớn tế bào đích, để ly trích được
bộ gene của tế bào. Sau đó từ bộ gene phức tạp này, ly trích đoạn DNA muốn tìm bằng
hàng loạt các kỹ thuật sinh học phân tử phức tạp, tốn thời gian và công sức.
Với kỹ thuật PCR, công việc được giải quyết một cách gọn gàng hơn nhiều. Chỉ
cần một số lượng nhỏ bộ gene có trong mẫu thử, với một cặp mồi đặc hiệu, có thể tổng
hợp và khuếch đại đoạn DNA đích trong bộ gen phức tạp thành hàng tỷ bản sao các
đoạn DNA giống hệt nhau mà không cần phải làm động tác ly trích trở lại.
Một trường hợp khác là nếu đoạn gen mong muốn đã nghiên cứu trước đó và đã
được gắn vào một plasmid, chuyển thể vào một loại vi khuẩn mang. Nếu muốn có


17


đoạn gene để nghiên cứu thì phải xin tác giả của nó gởi cho mình vi khuẩn mang với
plasmid có gắn đoạn gen trên. Tuy đơn giản hơn là phải ly trích ngay từ đầu đoạn gen
trên, nhưng cũng tốn khá nhiều thời giờ chờ đợi. Với PCR thì công việc lại đơn giản
hơn gấp nhiều lần. Chỉ cần có đoạn mồi cho gen mong muốn, rồi dùng kỹ thuật PCR
để khuếch đại đoạn gen này thành hàng tỷ bản copy giống hệt nhau. Có rất nhiều đoạn
gen mong muốn, rất thuần khiết, để làm nghiên cứu mà không cần phải chờ đợi, phải
xin phép tác giả,...
Từ cấu trúc của protein với thứ tự các amino acid, có thể suy ra được cấu trúc của
đoạn mồi cần tổng hợp để khuyếch đại được đoạn gene chịu trách nhiệm trong tổng
hợp protein trên. Ngoài ra, nhờ kỹ thuật RT-PCR (Reverse Transciptase PCR), có thể
dễ dàng khuếch đại mRNA, nhờ vậy có thể nghiên cứu được sự biểu hiện gene mà
không cần phải sử dụng các kỹ thuật sinh học phân tử trước đây như ly trích mRNA từ
một số lượng tế bào đích khá lớn rồi phát hiện nó bằng kỹ thuật Northern blotting.
Phát hiện mRNA còn có một ứng dụng khác nữa là phát hiện xem vi sinh vật gây bệnh

có kháng được với hóa trị liệu hay không, vì chỉ có vi khuẩn còn hoạt động mới tổng
hợp được mRNA, nếu vi khuẩn đã chết thì khó phát hiện được mRNA vì cấu trúc này
không bền dễ bị huỷ bởi các men RNase vốn dĩ rất bền và hiện diện sẵn trong môi
trường ( www.ykhoa.net).

2.11.5. PCR dùng trong phát hiện các vi sinh vật gây bệnh
Bằng cách khuếch đại đoạn nucleic acid đặc trưng của vi sinh vật gây bệnh trong
mẫu bệnh phẩm, thử nghiệm PCR có thể phát hiện vi sinh vật gây bệnh với độ nhạy
cực cao mà không có một thử nghiệm nào trước đây có thể so sánh được. Sở dĩ được
như vậy vì chỉ cần dưới 1 vi sinh vật gây bệnh có mặt trong mẫu thử là có hiện diện
acid nucleic đích và được PCR khuếch đại.
Trong các thử nghiệm huyết thanh hay miễn dịch học, chìa khoá chính của thử
nghiệm là có được trong tay các kháng thể hay kháng nguyên đặc hiệu. Nếu không
muốn mua sản phẩm thương mại, phải tự chế, đây là một công việc rất công phu và tốn
thời gian. Trong khi đó với PCR, chìa khóa chính của thử nghiệm là vấn đề tìm cho
được các đoạn mồi đặc hiệu. Nhờ có máy vi tính trợ giúp mà công việc này trở nên
đơn giản: với một đĩa CD có đầy đủ các dữ liệu về thư viện DNA của các vi sinh vật


18


mà các nhà nghiên cứu trước đã nghiên cứu được và với một phần mềm chuyên dùng,
có thể tự chọn những cặp mồi theo đúng trình tự đã chọn. Sau đó chỉ cần đặt hàng cho
một hãng tổng hợp đoạn mồi theo đúng trình tự đã chọn. Sau khi tổng hợp, hãng sản
xuất có thể gởi đến người sử dụng theo đường bưu điện mà không cần phải có điều
kiện bảo quản chặt chẽ, vì các đoạn mồi sau khi tổng hợp xong, làm đông khô có thể
giữ rất bền trong điều kiện bình thường. Công việc lúc này là thử nghiệm xem các
đoạn mồi được chọn đặc hiệu như mong muốn hay không, nếu không thì lại chọn một
cặp mồi khác.

Do phản ứng PCR quá nhạy, nên khi áp dụng trong chẩn đoán, một vấn đề rất
quan trọng cần phải lưu tâm, đó là hiện tượng dương tính giả, chủ yếu là do mẫu thử bị
nhiễm bởi các sản phẩm PCR trước đó. Chỉ cần mẫu thử bị nhiễm một hoặc vài mảnh
sản phẩm PCR thì các mảnh này sẽ được khuếch đại và mẫu cho kết quả dương tính
nhưng là dương tính giả. Ðể có thể tránh được kết quả dương tính giả, PCR chẩn đoán
phải được thực hiện trong một phòng thí nghiệm có tổ chức chặt chẽ, các giai đoạn thí
nghiệm phải được thực hiện tại những khu vực riêng, với các đồ dùng thí nghiệm
riêng, sử dụng nhiều vật liệu chỉ dùng một lần (đầu pipette, ống nghiệm phản ứng, ống
nghiệm chuẩn bị bệnh phẩm). Ngoài ra còn phải áp dụng nhiều biện pháp để loại trừ
ngoại nhiễm. Hiện nay, có lẽ hiệu quả nhất là sử dụng phương pháp nội tại loại trừ
ngoại nhiễm: đó là trộn sẵn trong ống nghiệm làm phản ứng PCR men Uracil N
Glycosylase (UNG) là men có khả năng phá hủy các sản phẩm PCR ngoại nhiễm trước
khi phản ứng PCR xảy ra. Chính nhờ việc sử dụng UNG mà các thử nghiệm PCR chẩn
đoán phát hiện vi sinh vật gây bệnh có thể thực hiện được tại bất cứ phòng thí nghiệm
nào, không cần phải tại một thí nghiệm được thiết kế đặc biệt cho PCR chẩn đoán.
Ngoài ra, PCR còn có một biến thể là kỹ thuật Nested - PCR có thể làm tăng thêm
độ nhạy cảm của thử nghiệm một khi nucleic acid đích hiện diện khá ít trong mẫu thử.
Với kỹ thuật RT-PCR, có thể khuếch đại nucleic đích là RNA, nhờ vậy có thể phát
hiện tác nhân gây bệnh mà acid nucleic đích là RNA chứ không chỉ hạn chế với acid
nucleic là DNA. Tuy nhiên, cần phải lưu ý rằng kỹ thuật RT-PCR cũng như Nested -
PCR là những kỹ thuật không thể dùng UNG là yếu tố nội tại chống ngoại nhiễm, vì
vậy chỉ có thể thực hiện được trong những phòng thí nghiệm có kiểm soát chặt chẽ.


19


Một ưu điểm khác của PCR trong chẩn đoán bệnh nhiễm khuẩn là PCR không
những có thể phát hiện được tác nhân vi sinh vật gây bệnh trực tiếp trong bệnh phẩm
mà còn có thể phân loại kiểu di truyền của các vi sinh vật này, không cần phải nuôi

cấy được vi khuẩn. Ðây là một đóng góp rất lớn trong nghiên cứu dịch tễ học tìm hiểu
mối liên quan của các tác nhân gây bệnh trong cộng đồng. Ngoài ra, PCR còn có thể
phát hiện vi khuẩn kháng kháng sinh, ví dụ phát hiện M. tuberculosis kháng
rifampicin, một chìa khóa chủ yếu để bác sĩ điều trị có thể sử dụng phát đồ điều trị
đúng cho bệnh nhân ( www.ykhoa.net).

2.11.6. PCR với tiến hóa và khảo cổ học
Từ năm 1963, các nhà nghiên cứu đã bắt đầu nghiên cứu về tiến hóa dựa trên cấu
trúc phân tử của protein (cytochrome c, hemoglobin, ribonuclease). Sau đó, bắt đầu
nghiên cứu tập trung vào trình tự chuỗi 16S RNA của ribosome trên vi khuẩn hay bộ
gene của ty thể và lục lạp của thực vật. Ngày nay, PCR đã góp phần làm công việc
nghiên cứu về tiến hóa phân tử học trở nên dễ dàng và nhanh chóng hơn. Người ta có
thể so sánh các loài với nhau bằng cách dùng các mồi đặc hiệu cho những vùng có tính
ổn định cao trong bộ gen, nhờ đó khuếch đại các vùng biến đổi, rồi so sánh với nhau.
Ưu điểm vượt trội nhất của PCR trong lĩnh vực này là chỉ cần một số lượng rất nhỏ
mẫu vật là đủ để có thể tiến hành phân tích.
Trong lĩnh vực khảo cổ học, nhờ DNA là một loại phân tử khá bền vững, có
những mảnh DNA có thể tồn tại nguyên vẹn trong thời gian khá dài. Có rất nhiều
trường hợp những mảnh DNA cổ đại đã được PCR khuếch đại thành công: người ta có
thể khuếch đại DNA ty thể từ một người Châu Mỹ sống cách đây 7000 năm hay từ các
mảnh xương của cọp răng chồn sống cách đây 14.000 năm ( www.ykhoa.net).

2.11.7. PCR với phát hiện các khiếm khuyết gene
Khiếm khuyết gene gây các bệnh di truyền hay ung thư là do bị đột biến đoạn hay
đột biến điểm. Phát hiện các đột biến bằng phương pháp PCR, khi đoạn DNA đặc hiệu
đuợc khuếch đại lên có kích thước khác bình thường (do thêm hay mất đoạn). Với các
trường hợp đột biến điểm, PCR hiện nay đã chiếm độc quyền trong lãnh vực này vì
khả năng thực hiện các thí nghiệm tương đối đơn giản và ít tốn thời gian so với các thử



20


nghiệm sinh học phân tử không dùng PCR. Dùng PCR với các cặp mồi đặc hiệu để
khuếch đại các đoạn DNA có chứa đột biến điểm rồi phân tích bằng các kỹ thuật sinh
học phân tử khác; hay dùng cặp primer chỉ khuếch đại đuợc đoạn DNA có đột biến
điểm mà không khuếch đại đoạn gene bình thường ( www.ykhoa.net).

2.11.8. PCR và việc định loại các mô
Các mô được định loại (type) khác nhau dựa vào sự khác nhau về các kháng
nguyên của phức hợp phù hợp tổ chức chính (MHC), ở người gọi là kháng nguyên
HLA. Ðịnh type các mô là một việc hết sức cần thiết trong ngân hàng dữ liệu mô ghép
và trước khi thực hiện phẫu thuật ghép mô hay cơ quan. Hiện nay, định type các mô
được dựa vào các phương pháp miễn dịch học. Tuy nhiên, PCR cũng là một triển vọng
đầy hứa hẹn trong lĩnh vực này, vì định type các mô dựa vào PCR cho được nhiều
thông tin hơn là các phương pháp miễn dịch học ( www.ykhoa.net).

2.11.9. PCR và việc xác định các dấu ấn di truyền
Dấu ấn di truyền được nói ở đây là những dấu ấn giúp phân biệt các cá thể trong
cùng loài, xem có liên hệ với nhau hay không. Các dấu ấn này hoàn toàn không có ý
nghĩa gì trong việc biểu hiện kiểu hình thông qua tổng hợp protein.
Trước đây, để phát hiện các dấu ấn di truyền phải ly trích được bộ gene từ một
khối lượng khá nhiều tế bào của cá thể cần khảo sát (mô, máu,..) sau đó cắt đoạn bộ
gene này bằng các restriction enzyme, điện di trên thạch, làm Southern blotting, rồi
dùng các đoạn dò đặc hiệu được đánh dấu để phát hiện. Kết quả là mỗi cá thể sẽ có
một hình ảnh đặc trưng bằng các vạch được đánh dấu bằng các đoạn dò khi lai ghép
trên Southern blotting. Người ta gọi kỹ thuật này là kỹ thuật phân tích sự đa hình về
chiều dài của các mảnh DNA bị cắt đoạn, RFLP (Restriction Fragment Lengh
Polymorphism).
Với PCR, công việc trở nên đơn giản hơn rất nhiều. Có hai kiểu PCR phát hiện

dấu ấn di truyền hiện đang được dùng. Kiểu thứ nhất là dùng PCR với các đoạn mồi
nằm trước và sau các microsatellite, là các cấu trúc CACACA lặp đi lặp lại khoảng
100000 lần trong bộ gene của động vật có vú và khuếch đại các microsatellite này. Vì
các cá thể khác nhau có sự khác nhau về số lượng các cấu trúc CA tạo thành các


21


microsatellite nên sau khi khuếch đại bằng PCR và phân tích các vạch trên thạch điện
di, sẽ thấy các kiểu mẫu vạch khác nhau tùy từng cá thể được phân tích. Kiểu thứ hai
gọi là phương pháp khuếch đại ngẫu nhiên các DNA đa hình (Random Amplified
polymorphic DNA - RAPD) là dùng các đoạn mồi ngẫu nhiên, thường ngắn khoảng 10
nucleotide, cho bắt cặp với nucleic acid đích trong điều kiện bắt cặp không chặt chẽ, ở
nhiệt độ khoảng 30 – 40
o
C chẳng hạn. Nhờ vậy khi thực hiện PCR, sẽ có sản phẩm
PCR là những đoạn DNA dài ngắn khác nhau do các đoạn mồi bắt cặp ngẫu nhiên trên
DNA đích (ngẫu nhiên nhưng là tất nhiên, vì đoạn mồi sẽ bắt cặp trên chuỗi đích nào
tương đối bổ sung nhất với nó) và các kích thước của những đoạn này sẽ được phát
hiện trên thạch điện di. Sự giống và khác nhau về hình ảnh trên thạch điện di sẽ cho
biết các cá thể đuợc phân tích có giống hay khác nhau, hay có liên hệ với nhau như thế
nào.
Kỹ thuật PCR phát hiện dấu ấn di truyền đã có những đóng góp rất lớn trong khoa
học hình sự. Chỉ cần tội phạm để lại trên hiện trường rất ít mẫu vật: một vài giọt máu
khô, vết tinh dịch, vài sợi lông hay tóc, hay thậm chí mẫu tàn thuốc có dính lại vài tế
bào niêm mạc miệng, là có thể truy tìm được dấu ấn di truyền và phát hiện được ngay
đúng tội phạm mà không thể nào chối cãi được. (www.ykhoa.net)

2.11.10. PCR và kỹ thuật phát hiện trình tự chuỗi của một đoạn DNA (DNA

sequencing)
Trước đây, để làm DNA sequencing, người ta phải dùng kỹ thuật Maxam và
Gilbert, kỹ thuật này tương đối phức tạp.
Hiện nay làm DNA sequencing bằng kỹ thuật PCR đơn giản hơn nhiều, kỹ thuật
này được gọi là kỹ thuật Sanger. Được rất được nhiều phòng thí nghiệm sinh học phân
tử hiện nay sử dụng.
Giá trị sử dụng Phương pháp PCR có ý nghĩa lớn vì nhiều lí do :
Thời gian thực hiện cực nhanh : Chỉ cần mất 3 giờ để khuếch đại một trình tự
DNA được quan tâm, so với phương pháp tạo dòng của kĩ thuật tái tổ hợp DNA phải
mất cả tuần hoặc lâu hơn.
Đơn giản và ít tốn kém: Nó được thực hiện trong ống nghiệm plastic nhỏ gồm các
thành phần tối thiểu được sử dụng đồng thời. Trong khi đó, phương pháp tạo dòng


22


điển hình cần các vật liệu đắt tiền như màng, nucleotide triphosphate mang dấu phóng
xạ và việc thực hiện cần thao tác khéo léo đặc biệt.
Độ tinh sạch của mẫu không cần cao: PCR có thể thực hiện với các mẫu
nucleotide thô. Ví dụ mẫu máu hay dấu vết trong phân tích pháp y. Điều này ngược
với kĩ thuật tái tổ hợp DNA, đoạn gen hoặc vector đều cần tương đối tinh khiết.
Nhờ ưu thế trên, PCR đã hấp dẫn các nhà nghiên cứu ngay từ lúc ra đời trong việc
khuếch đại các trình tự nucleotide đặc hiệu và chẩn đoán phân tử.
Giới hạn duy nhất đối với phương pháp này là phải biết trình tự nucleotide (hoặc ít
nhất một phần) của đoạn DNA cần khuếch đại. Nó không thay thế kĩ thuật tái tổ hợp
DNA mà góp phần đáng kể bổ sung kĩ thuật này.
Như vậy, từ khi ra đời đến nay, PCR đã có vai trò cách mạng hóa trong nghiên
cứu cấu trúc và chức năng gene. Nó được hoàn thiện không ngừng và có nhiều ứng
dụng rộng rãi trong nhiều lĩnh vực khác nhau như xác định trình tự nucleotide của

gene, gây đột biến điểm định hướng,…Có thể thực hiện PCR in situ (ngay trong tế
bào) với cả DNA, RNA.
Nó được sử dụng trong pháp y để phân tích di truyền vệt máu khô, chẩn đoán các
bệnh di truyền và lây nhiễm, dự báo các sai hỏng di truyền. PCR có thể dùng để
nghiên cứu DNA cổ xưa từ mẫu khảo cổ.
PCR kết hợp với các kĩ thuật khác của tạo dòng phân tử giúp sinh học xâm nhập
vào nhiều lĩnh vực mà trước đây khó với tới (www.ykhoa.net).

2.12. Thành phần hóa học của DNA
Deoxyribonucleic acid là một hợp chất polymer cấu tạo bởi các đơn phân
nucleotide. Nó được tạo nên do sự nối liền nhiều đơn phân cùng kiểu là các nucleotide.
Kết quả phân tích hóa học DNA của những sinh vật khác nhau cho thấy sự giống nhau
đặc biệt giữa các đơn chất hợp thành DNA. Thành phần hóa học của DNA gồm có gốc
acid phosphoric, đường 5-desoxyribose và các base nitrogenous. base nitrogenuos ở
DNA gồm có hai purine là adenine (A) và guanine (G) và hai pyrimidine là cytosine
(C) và thymine (T); ở RNA còn có uracil (U) thay cho thymine (T). Đường pentose
(5C) desoxyribose gắn với nitrogenous base ở vị trí C
1
sẽ tạo nên nucleoside.
Nucleoside được gắn thêm nhóm phosphate vào C
5
của đường pentose thành


23


nucleotide. Tính đặc hiệu của nucleotide do base, nên khi nói đến acid nucleic, base
thường được sử dụng thay cho nucleotide. Cách gọi thường dùng là cặp base, kí hiệu
bp hay kb (Phạm Thành Hổ, 2000, trang 140 - 141).



Hình 2.11 Cấu tạo hóa học của acid nucleic



















24


Phần 3. Vật liệu và cách thức tiến hành

3.1. Thời gian và địa điểm tiến hành
 Quá trình chế tạo bắt đầu từ 3 / 2005 đến 8 / 2005.
 Tiến hành chế tạo tại Trường Đại Học Nông Lâm TP. HCM.

 Quá trình chế tạo tại Bộ môn Điều Khiển Tự Động trực thuộc khoa Cơ Khí.
 Chạy mẫu kiểm tra và so sánh kết quả tại Trung Tâm Phân Tích Hóa Sinh.

3.2. Vật liệu
3.2.1. Linh kiện cho bộ khuếch đại tín hiệu từ cảm biến
 Nhiệt điện trở Platine Pt100 (sản xuất tại Đức)
 Sensor cảm ứng nhiệt Lm35 (sản xuất tại Đài Loan)
 Tụ 1000 µF , 100 µF ,10 µF, 1 µF, 104 pF (sản xuất tại Đài Loan)
 Điện trở sai số 1% không thay đổi theo nhiệt độ (sản xuất tại Singapore)
 Biến trở vi chỉnh (sản xuất tại Đài Loan)
 Điốt cầu 3A (sản xuất tại Trung Quốc)
 Op07 (sản xuất tại Đài Loan)
 Ổn áp 7805, 7905 (sản xuất tại Đài Loan)

3.2.2. Linh kiện cho mạch vi xử lý
 Tụ 1000 µF,100 µF (sản xuất tại Đài Loan)
 Tụ 33 pF,1000 µF, 100 µF (sản xuất tại Đài Loan)
 Điốt cầu 3A
 Vi xử lý AT90S8535 (sản xuất tại Đài Loan)
 Thạch anh 4M
 LM358 (sản xuất tại Đài Loan)
 LCD 20 x 4 (Sản xuất tại Trung Quốc)
 Ổn áp 7805
 Phím 4x4
 Optodiac P521 (sản xuất tại Đài Loan)



25



3.2.3. Linh kiện cho mạch khuyếch đại công suất
 Điôt 10A, N4007 (sản xuất tại Nga và Trung Quốc)
 Tụ : 2200 µF, 10000 µF
 IRF 2807 (sản xuất tại Đài Loan)
 Điện trở 1 MΩ

3.2.4. Linh kiện và thiết bị cho bộ nguồn
 Biến áp các nguồn ra 9V(3A), 9-0-9(3A), 24V(15A) (sản xuất tại Việt Nam)
 Điôt cầu 50A (sản xuất tại Đài Loan)
 Tụ 10000µF,4700 µF
 Ổn áp 7805, 7809, 7812, 7818, 7824
 Transitor C3998 (sản xuất tại Đài Loan)

3.2.5. Linh kiện cho bộ luân nhiệt và nắp chống ngưng
 TE 7000/127/085BS (sản xuất tại Singapore)
 Dây điện trở cung cấp nhiệt
 Nhôm tản nhiệt 10 x 21 x 3 mm
 Quạt 10 cm x10 cm, DC 12V, 0,6A (sản xuất tại Nhật)
 Mỡ Silicon
 Keo chịu nhiệt (sản xuất tại Mỹ)
 Fip 5 mm
 Cao su silicon
 Dây dẫn chịu nhiệt (sản xuất tại Nhật)
 Giấy cách điện dẫn nhiệt

3.2.6. Vật liệu làm khung và vỏ máy
 Inox 5 dem
 Sắt V 2
 Giấy cách điện

 Thép chống từ
 Máy bào kim loại

×