Tải bản đầy đủ (.pdf) (2 trang)

Special Applications

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (208.53 KB, 2 trang )

<span class='text_page_counter'>(1)</span>SPECIAL APPLICATIONS ADITYA NARAYAN SHARMA - KANCHRAPARA - INDIA. 1. Show that Z. ∞. p. e−x − e−x. q. dx =. p−q. γ x pq for p, q > 0, where γ is the Euler - Mascheroni constant. 0. Proof. Z. ∞. p. q. (e−x − e−x )d(ln x). I= 0. Z h i∞ p q +p I = (e−x − e−x ) ln 0. ∞. p. e−x xp−1 ln x − q. 0. ∞. Z. q. e−x xq−1 ln xdx. 0. The substitutions xp = u, xq = v makes the last two integrals as, Z ∞ Z ∞ Z ∞ q − p −xp p−1 −xq q−1 p e x ln x − q e x ln xdx = e−x x ln xdx qp 0 0 Z ∞ 0 q − p p − q = e−x ln xdx =γ qp qp 0 h i ∞ p q ln x ln x − lim Now (e−x − e−x ) ln x = lim 1 1 0. x→∞. p. e−x −e−x. q. x→0. p. q. e−x −e−x. Both of these can be evaluated by applying L-Hospital’s rule successively and both of them are 0 Z ∞ −xp q p − q (e − e−x ) Hence dx = γ x pq 0  2. Z. 1. tα−1 − tβ−1. 0. (1 + t) ln t. dx = ln. Γ( 12 + 12 α)Γ( 21 β). !. Γ( 12 + 12 β)Γ( 21 α). Proof. 1. xa−1 dx then by differentiating w.r.t to a 0 (1 + x) ln x Z 1 a−1 X x 1 0 F (a) = dx = (−1)n 1 + x n + a 0 n≥0  1 a + 1  a  X X 1 1 1 X 1 = Now, (−1)n = ψ −ψ a − a+1 n+a 2 n+ 2 2 2 2 n+ 2 n≥0 n≥0 n≥0           1 α+1 α 1 β+1 β So, F 0 (α) − F 0 (β) = ψ −ψ − ψ −ψ 2 2 2 2 2 2 Z. Let F (a) =. 1.

<span class='text_page_counter'>(2)</span> 2. ADITYA NARAYAN SHARMA - KANCHRAPARA - INDIA. !  Γ( 1+α )Γ( β )  2 2 +C Integrating we have, F (α) − F (β) = ln α Γ( 1+β 2 )Γ( 2 ) Now since, F (1) = 0 ⇒ C = 0 ! β  Γ( 1+α) 2 )Γ( 2 ) So F (α) − F (β) = ln α Γ( 1+β 2 )Γ( 2 )  3. Find a closed form for Z. ∞. 0. sin2n+1 x. x for n ≥ 0. dx. Proof. Z ∞Z ∞ sin2n+1 x I= e−xy sin2n+1 dxdy dx = x 0 0 0 Now by IBP two times we can create a recurrence relation and thus evaluate, Z ∞ (2n + 1)! Jn = e−ax sin2n+1 xdx = Qn 2 + (2r + 1)2 ) (a 0 r=1 Z ∞ dy Qn Thus, I = (2n + 1)! 2 2 0 r=1 (a + (2r + 1) ) n X Ar 1 = The expression Qn 2 + (2r + 1)2 2 2 y (a + (2r + 1) ) r=1 r=0 Z. ∞. where the coefficients can be determined by the cover-up rule as (−1)k 2k + 1 Ak = 2n · 2 (n − k)!(n + k + 1)!     n Z ∞ n X Ak π X π 2n k 2n + 1 So, I = (2n+1)! dy = (−1) = 2 + (2k + 1)2 2n+1 2n+1 n − k n y 2 2 0 k=0. k=0.  Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta Turnu - Severin, MEHEDINTI. E-mail address:

<span class='text_page_counter'>(3)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×