Tải bản đầy đủ (.pdf) (20 trang)

Tài liệu Hanbook of LASERS P1 ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (56.51 KB, 20 trang )

©2001 CRC Press LLC
Ce
3
+
Ti
3
+
Cr
3+
Cr
4 +
Sm
+
2
V
+
2
Wavelength ( µm)
0.5
1.0 1.5
2.0
4
(SrF )
2
(MgF )
2
(LiYF )
4
6
(BeAl O , LiSrAlF )
2


(Mg SiO )
2
Co
+
2
(MgF )
2
(Al O )
3
2
Ni
+
2
(MgF , MgO)
2
2.5
Figure 1.1.11 Reported wavelength ranges of representative tunable crystalline lasers operating
at room temperature (from the Handbook of Laser Wavelengths, CRC Press, Boca Raton, FL,
1998).
Upconversion processes make possible many additional lasing transitions and excitation
schemes. Upconversion excitation techniques include multi-step absorption, ion-ion energy
transfer, excited state absorption, and photon avalanche processes. Lasers based on
upconversion schemes are noted in the mode column of the laser tables. Transitions
involved in upconversion processes are given in Table 1.1.3 and can be identified by
reference to the relevant energy level diagrams for the ions in Figures 1.1.4–1.1.8. The
success of many of the schemes depends upon the degree of resonance of energy transfer
transitions and the rate of nonradiative transitions by multiphonon emission and thus varies
with the host crystal.
Cascade and cross-cascade lasing schemes have also been employed; transitions involved
in cascade and cross-cascade lasing schemes are summarized in Tables 1.1.4 and 1.1.5. For

examples of avalanche-pumped upconversion lasers, see References 18 and 1037.
©2001 CRC Press LLC
Table 1.1.3
Multi-step Upconversion Excitation Schemes
optical transition ⇒ ion-ion energy transfer transitions

nonradiative transition
Laser
ion
Upper
laser
level
Codopant
ion Upconversion excitation scheme
Pr
3+ 3
P
0

Yb
3+
1)
3
H
4

1
G
4
2)

1
G
4

3
P
1 ➟
3
P
0
1)
2
F
7/2

2
F
5/2
(Yb
3+
)
2)
2
F
5/2

2
F
7/2
(Yb

3+
) ⇒
3
H
4

1
G
4
(Pr
3+
)
3)
1
G
4

3
P
1,0
Nd
3+ 4
D
3/2
— 1)
4
I
9/2

4

F
5/2 ➟
4
F
3/2
2)

4
F
3/2

4
D
3/2
1)
4
I
9/2

4
G
5/2 ➟
4
F
3/2
2)

4
F
3/2


4
D
3/2
2
P
3/2
— 1)
4
I
9/2

4
G
5/2 ➟
4
F
3/2
2)

4
F
3/2

4
D
3/2 ➟
2
P
3/2

Ho
3+ 5
S
2
Yb
3+
1)
2
F
7/2

2
F
5/2
(Yb
3+
)
2)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒
5
I

8

5
I
6
(Ho
3+
)
3)
2
F
7/2

2
F
5/2
(Yb
3+
)
4)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒

5
I
6

5
S
2
(Ho
3+
)
5
I
7
Yb
3+
1)
2
F
7/2

2
F
5/2
(Yb
3+
)
2)
2
F
5/2


2
F
7/2
(Yb
3+
) ⇒
5
I
8

5
I
6
(Ho
3+
)

5
I
7
Er
3+ 2
P
3/2
— 1)
4
I
15/2


4
I
11/2
(Er
1
3+
)
2)
4
I
15/2

4
I
11/2
(Er
2
3+
)
3)
4
I
11/2

4
I
15/2
(Er
1
3+

) ⇒
4
I
11/2

4
F
7/2


4
S
3/2
(Er
2
3+
)
4)
4
S
3/2

4
I
15/2
(Er
2
3+
) ⇒
4

F
9/2

2
K
13/2
(Er
3
3+
)

2
P
3/2
4
G
11/2
— 1)
4
I
15/2

4
I
13/2
(fourfold) ⇒
4
G
11/2
2

H
9/2
— 1)
4
I
15/2

4
I
11/2
(Er
1
3+
)
2)
4
I
15/2

4
I
11/2
(Er
2
3+
)
3)
4
I
11/2


4
I
15/2
(Er
1
3+
) ⇒
4
I
11/2

4
F
7/2
(Er
2
3+
)

4
S
3/2
4)
4
I
15/2

4
I

11/2➟


4
I
13/2
(Er
3
3+
)
5)
4
S
3/2

4
I
15/2
(Er
2
3+
) ⇒
4
I
13/2

2
H
9/2
(Er

3
3+
)
©2001 CRC Press LLC
Table 1.1.3—continued
Multi-step Upconversion Excitation Schemes
Laser
ion
Upper
laser
level
Codopant
ion Upconversion excitation scheme
4
S
3/2


1)
4
I
15/2

4
I
9/2 ➟


4
I

11/2
2)
4
I
11/2

4
F
5/2,7/2


4
S
3/2
1)
4
I
15/2

4
I
11/2
(Er
1
3+
)
2)
4
I
15/2


4
I
11/2
(Er
2
3+
)
3)
4
I
11/2

4
I
15/2
(Er
1
3+
) ⇒
4
I
11/2

4
F
7/2


4

S
3/2
(Er
2
3+
)
4
F
9/2
Yb
3+
Yb
3+
1)
2
F
7/2

2
F
5/2
(Yb
3+
)
2)
4
I
15/2

4

I
13/2
(Er
3+
)
3)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒
4
I
13/2

4
F
9/2
(Er
3+
)
1)
2
F
7/2


2
F
5/2
(Yb
3+
)
2)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒
4
I
15/2

4
I
11/2
(Er
3+
)
3)
2

F
7/2

2
F
5/2
(Yb
3+
)
4)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒
4
I
11/2

4
F
7/2
(Er
3+
)


4
F
9/2
4
I
11/2
— 1)
4
I
15/2

4
I
13/2
(Er
1
3+
)
2)
4
I
15/2

4
I
13/2
(Er
2
3+

)
3)
4
I
13/2

4
I
15/2
(Er
1
3+
) ⇒
4
I
13/2

4
I
9/2 ➟


4
I
11/2
(Er
2
3+
)
Tm

3+ 1
I
6
Yb
3+
1)
2
F
7/2

2
F
5/2
(Yb
3+
)
2)
2
F
7/2

2
F
5/2
(Yb
3+
) ⇒
3
H
6


3
H
5
(Tm
1
3+
)



3
F
4
3)
2
F
7/2

2
F
5/2
(Yb
3+
)
4)
2
F
5/2


2
F
7/2
(Yb
3+
) ⇒
3
F
4

3
F
3
(Tm
1
3+
)



3
H
4
5)
3
F
3

3
H

6
(Tm
1
3+
) ⇒
3
F
3

1
D
2
(Tm
2
3+
)
6)
2
F
7/2

2
F
5/2
(Yb
3+
)
7)
2
F

5/2

2
F
7/2
(Yb
3+
) ⇒
1
D
2

3
P
J
(Tm
2
3+
)



1
I
6
Tm
3+ 1
D
2
— 1)

3
H
6

3
H
4
2)
3
H
4

1
D
2
1)
3
H
6

3
H
4
(Tm
1
3+
)
2)
3
H

6

3
H
4
(Tm
2
3+
)
3)
3
H
4

3
H
6
(Tm
1
3+
) ⇒
3
H
4

1
D
2
(Tm
2

3+
)
Tm
3+ 3
H
4
Yb
3+
1)
2
F
7/2

2
F
5/2
(Yb
3+
)
2)
3
H
6

3
H
5 ➟


3

F
4
(Tm
3+
)
3)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒
3
F
4

3
F
2
(Tm
3+
)



3

H
4
©2001 CRC Press LLC
Table 1.1.3—continued
Multi-step Upconversion Excitation Schemes
Laser
ion
Upper
laser
level
Codopant
ion Upconversion excitation scheme
Tm
3+ 1
G
4
Yb
3+
1)
2
F
7/2

2
F
5/2
(Yb
3+
)
2)

2
F
7/2

2
F
5/2
(Yb
3+
) ⇒
3
H
6

3
H
5
(Tm
3+
)



3
F
4
3)
2
F
7/2


2
F
5/2
(Yb
3+
)
4)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒
3
F
4

3
F
2➟


3
H
4

(Tm
3+
)
5)
2
F
7/2

2
F
5/2
(Yb
3+
)
6)
2
F
5/2

2
F
7/2
(Yb
3+
) ⇒
3
H
4

1

G
4
(Tm
3+
)
Table 1.1.4
Cascade Laser Schemes
→ lasing transition


nonradiative transition
Laser ion Cascade transitions
Pr
3+ 3
P
0

1
G
4

3
F
4
3
P
0

1
G

4

3
H
5
Nd
3+ 4
F
3/2

4
I
13/2

4
I
11/2
Ho
3+ 5
S
2

5
I
5

5
I
6
5

S
2

5
I
5

5
I
7
5
S
2

5
I
6

5
I
8
5
S
2

5
I
7

5

I
8
5
S
2

5
I
5




5
I
6

5
I
7
5
S
2

5
I
5





5
I
6

5
I
8
5
S
2

5
I
5




5
I
6

5
I
7

5
I
8

5
S
2

5
F
5




5
I
4




5
I
5

5
I
6

5
I
7
5

I
6

5
I
7

5
I
8
Er
3+ 4
S
3/2

4
I
9/2

4
I
11/2
4
S
3/2

4
I
9/2


4
I
13/2
4
S
3/2

4
I
11/2

4
I
13/2
4
S
3/2

4
I
13/2

4
I
15/2
4
S
3/2

4

I
9/2 ➟


4
I
11/2

4
I
13/2
4
S
3/2

4
I
9/2 ➟


4
I
11/2

4
I
13/2

4
I

15/2
4
F
9/2

4
I
11/2

4
I
13/2
4
I
11/2

4
I
13/2

4
I
15/2
Tm
3+ 3
F
4

3
H

5 ➟


3
H
4

3
H
6
©2001 CRC Press LLC
Table 1.1.5
Cross-Cascade Laser Schemes
→ lasing transition ⇒ nonradiative energy transfer transitions
Laser ions Cross-cascade transitions
Er
3+
+ Ho
3+ 4
S
3/2

4
I
13/2
(Er
3+
)
4
I

13/2

4
I
15/2
(Er
3+
) ⇒
5
I
8

5
I
7
(Ho
3+
)
5
I
7

5
I
8
(Ho
3+
)
4
I

11/2

4
I
13/2
(Er
3+
)
4
I
13/2

4
I
15/2
(Er
3+
) ⇒
5
I
8

5
I
7
(Ho
3+
)
5
I

7

5
I
8
(Ho
3+
)
Er
3+
+ Tm
3+ 4
S
3/2

4
I
13/2
(Er
3+
) ⇒
4
I
13/2

4
I
15/2
(Er
3+

) ⇒
3
H
6

3
F
4
(Tm
3+
)
3
F
4

3
H
6
(Tm
3+
)
4
I
11/2

4
I
13/2
(Er
3+

)
4
I
13/2

4
I
15/2
(Er
3+
) ⇒
3
H
6

3
F
4
(Tm
3+
)
3
F
4

3
H
6
(Tm
3+

)
Tm
3+
+ Ho
3+ 3
H
4

3
H
5 ➟


3
F
4
(Tm
3+
)
3
F
4

3
H
6
(Tm
3+
)



5
I
8

5
I
7
(Ho
3+
)
55
I
7

5
I
8
(Ho
3+
)
3
H
4

3
F
4
(Tm
3+

)
3
F
4

3
H
6
(Tm
3+
)


5
I
8

5
I
7
(Ho
3+
)
55
I
7

5
I
8

(Ho
3+
)
Er
3+
+ Tm
3+
+ Ho
3+ 4
I
11/2

4
I
13/2
(Er
3+
)
4
I
13/2

4
I
15/2
(Er
3+
) ⇒
3
H

6

3
F
4
(Tm
3+
)
3
F
4

3
H
6
(Tm
3+
)


5
I
8

5
I
7
(Ho
3+
)

55
I
7

5
I
8
(Ho
3+
)
©2001 CRC Press LLC
Further Reading
Caird, J. and Payne, S. A., Crystalline Paramagnetic Ion Lasers, in Handbook of Laser
Science and Technology, Suppl. 1: Lasers, CRC Press, Boca Raton, FL (1991), p. 3.
Hanna, D. C. and Jacquier, B., Eds., Miniature coherent light sources in dielectric media,
Opt. Mater. 11, Nos. 2/3 (1999).
Kaminskii, A. A., Crystalline Lasers: Physical Processes and Operating Schemes, CRC
Press, Boca Raton, FL (1996).
Kaminskii, A. A., Laser Crystals, Their Physics and Properties, Springer-Verlag,
Heidelberg (1990).
Moulton, P., Paramagnetic Ion Lasers, in Handbook of Laser Science and Technology, Vol.
I: Lasers and Masers, CRC Press, Boca Raton, FL (1995), p. 21
©2001 CRC Press LLC
1.1.2 Host Crystals Used for Transition Metal Laser Ions
Table 1.1.6
Host Crystals Used for Transition Metal Laser Ions
Crystal Ti
3+
V
2+

Cr
2+
Cr
3+
Cr
4+
Mn
5+
Fe
2+
Co
2+
Ni
2+


Oxides

Al
2
O
3 • •
Ba
3
(VO
4
)
2 •
BeAl
2

O
4 • •
BeAl
6
O
10 •
Be
3
Al
2
Si
6
O
18 •
CaGd
4
(SiO
4
)
3
O

CaY
2
Mg
2
Ge
3
O
12 •

Ca
2
GeO
4 •
Ca
3
Ga
2
Ge
3
O
12 •
Ca
3
Ga
2
Ge
4
O
14 •
Gd
3
Ga
5
O
12 •
Gd
3
Sc
2

Al
3
O
12 •
Gd
3
Sc
2
Ga
3
O
12 •
La
3
Ga
5
GeO
14 •
La
3
Ga
5.5
Nb
0.5
O
14 •
La
3
Ga
5.5

Ta
0.5
O
14 •
La
3
Ga
5
SiO
14 •
LiNbGeO
5 •
Mg
2
SiO
4 •
MgO •
ScBO
3 •
ScBeAlO
4 •
Sr
3
Ga
2
Ge
4
O
14 •
SrGd

4
(SiO
4
)
3
O

YA1O
3 •
Y
2
SiO
5 •
Y
3
Al
5
O
12 • •
Y
3
Ga
5
O
12 •
Y
3
Sc
2
Al

3
O
12 •
Y
3
Sc
2
Ga
3
O
12 •
ZnWO
4 •


Halides
CsCaF
3 •
KMgF
3 • •
©2001 CRC Press LLC
Table 1.1.6—continued
Host Crystals Used for Transition Metal Laser Ions
Crystal Ti
3+
V
2+
Cr
2+
Cr

3+
Cr
4+
Mn
5+
Fe
2+
Co
2+
Ni
2+
KZnF
3 • •
LiCaAlF
6 •
LiSrAlF
6 • •
LiSrCrF
6 •
LiSrGaF
6 •
MgF
2 • •
MnF
2 •
Na
3
Ga
3
Li

3
F
12 •
SrAlF
5 •
ZnF
2 •


Chalcogenides
CdMnTe •
ZnS •
ZnSe • •


Phosphide

n-InP •
1.1.3 Host Crystals Used for Lanthanide Laser Ions
Table 1.1.7
Host Crystals Used for Divalent Lanthanide Laser Ions
Crystal Sm
2+
Dy
2+
Tm
2+


Halides


CaF
2 • • •
SrF
2 • •
Table 1.1.8
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce
3+
Pr
3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb
3+


Oxides


Al
2
(WO
4
)
3 •
Ba
0.25
Mg
2.75
-
Y
2
Ge
3
O
12

Ba
2
MgGe
2
O
7 •
©2001 CRC Press LLC
Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce
3+

Pr
3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb
3+


Oxides

BaGd
2
(MoO
4
)
4 •
BaLaGa
3

O
7 •
Ba
2
NaNb
5
O
15 •
Ba
2
ZnGe
2
O
7 •
Ba
3
LaNb
3
O
12 •
Bi
4
Ge
3
O
12 • • •
Bi
4
Si
3

O
12 •
Bi
4
(Si,Ge)
3
O
12 •
Bi
12
SiO
20 •
Ca
0.25
Ba
0.75
-
(NbO
3
)
2

CaAl
4
O
7


CaGd
4

(SiO
4
)
3
O

CaLa
4
(SiO
4
)
3
O

CaMg
2
Y
2
Ge
3
O
12 •
CaMoO
4 • • •
Ca(NbO
3
)
2 • • • •
Ca(NbGa)
2

-
Ga
3
O
12

CaSc
2
O
4 •
CaWO
4 • • • • •
CaYAlO
4 •
CaY
2
Mg
2
Ge
3
O
12 • •
CaY
4
(SiO
4
)
3
O
• • •

Ca
2
Al
2
SiO
7 • •
Ca
2
Ga
2
Ge
4
O
14 •
Ca
2
Ga
2
SiO
7 •
Ca
3
Ga
2
Ge
3
O
12 • •
Ca
3

Ga
2
Ge
4
O
14 •
Ca
3
Ga
2
SiO
7 •
Ca
3
Ga
4
O
9 •
Ca
3
(Nb,Ga)
2
-
(Ga
3
O
12

Ca
3

(NbLiGa)
5
O
12 •
Ca
3
(VO
4
)
2 •
Ca
4
GdO(BO
3
)
3 •
Ca
4
La(PO
4
)
3
O

©2001 CRC Press LLC
Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce
3+
Pr

3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb
3+
CeP
5
O
14 •
CsLa(WO
4
)
2 •
CsNd(MoO
4
)
2 •
ErAlO

3 • • •
ErVO
4
Er(Y,Gd)AlO
3 • •
Er
2
O
3 •
Er
2
SiO
5 • • •
Er
3
Al
5
O
12 •
Er
3
Sc
2
Al
3
O
12 •
Ga
3
Al

5
O
12 •
GdAlO
3 • • • •
GdGaGe
2
O
7 •
GdP
5
O
14 •
GdScO
3 •
GdVO
4 • •
Gd
2
(MoO
4
)
3 •
Gd
2
(WO
4
)
3 •
Gd

2
O
3 •
Gd
3
Al
5
O
12 • •
Gd
3
Ga
5
O
12 • • • •
Gd
3
Sc
2
Al
3
O
12

• •
Gd
3
Sc
2
Ga

3
O
12 • • •
HfO
2
-Y
2
O
3 •
Ho
3
Al
5
O
12 •
Ho
3
Ga
5
O
12 •
Ho
3
Sc
2
Al
3
O
12 •
KEr(WO

4
)
2 •
KGd(WO
4
)
2

KGd(WO
4
)
2 • • • •
KLa(MoO
4
)
2 • • •
KLu(WO
4
)
2 • •
KNdP
4
O
12

KY(MoO
4
)
2


KY(WO
4
)
2 • • • •
K(Y,Er)(WO
4
)
2 • •
K
3
(La,Nd)(PO
4
)
2

K
5
Bi(MoO
4
)
4

©2001 CRC Press LLC
Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce
3+
Pr
3+
Nd

3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb
3+
K
5
Nd(MoO
4
)
4

LaAlO
3

LaAl
11
MgO
19
LaBGeO

5

LaGaGe
2
O
7

LaMgAl
11
O
19

LaNbO
4

LaP
5
O
14

(La,Nd)P
5
O
14

(La,Pr)P
5
O
14 •
LaSc

3
(BO
3
)
4

(La,Sr)(Al,Ta)O
3

LaSr
2
Ga
11
O
20

La
2
Be
2
O
5

La
2
O
3

7La
2

O
3
-9SiO
2

La
2
Si
2
O
7

La
3
Ga
5
GeO
14

La
3
Ga
5
SiO
14

La
3
Ga
5.5

Nb
0.5
O
14

La
3
Ga
5.5
Ta
0.5
O
14


Li(Bi,Nd)P
4
O
12

Li(La,Nd)P
4
O
12

Li(Nd,Gd)P
4
O
12


LiGd(MoO
4
)
2

LiLa(MoO
4
)
2

LiNbO
3 • • • • •
LiPrP
4
O
14 •
LuA1O
3 • • • •
LuScO
3

Lu
2
SiO
5

Lu
3
Al
5

O
12 • • • • •
(Lu,Er)
3
Al
5
O
12 •
Lu
3
Ga
5
O
12 • •
Lu
3
Sc
2
Al
3
O
12 • •
β''-Na
1+x
Mg
x
-
Al
11-x
O

17

NaBi(WO
4
)
2

NaGaGe
2
O
7

©2001 CRC Press LLC
Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce
3+
Pr
3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er

3+
Tm
3+
Yb
3+
NaGd(MoO
4
)
2

NaGd(WO
4
)
2

NaGdGeO
4

NaLa(MoO
4
)
2

NaLa(WO
4
)
2

NaLuGeO
4 • •

NaNdP
4
O
12

NaYGeO
4

NaY(MoO
4
)
2

NaY(WO
4
)
2

Na(Nd,Gd)-
(WO
4
)
2

Na
3
Nd(PO
4
)
2


Na
3
(La,Nd)-
(PO
4
)
2

Na
5
(Nd,La)-
(MoO
4
)
4

Na
5(
Nd,La)-
(WO
4
)
4

NdAl
3
(BO
3
)

4

Nd(Ga,Cr)
3
(BO
3
)
4

NdGaGe
2
O
7

Nd
3
Ga
5
O
12

Nd
3
Ga
5
GeO
14

Nd
3

Ga
5
SiO
14

NdP
5
O
14

PbMoO
4

PbWO
4

Pb
5
Ge
3
O
11

PrP
5
O
14 •
RbNd(WO
4
)

2

ScBeAlO
4


Sc
2
O
3

Sc
2
SiO
5 •
SrAl
2
O
4


SrAl
4
O
7

• • • •
SrAl
12
O

19

• •
Sr
x
Ba
1-x
(NbO
3
)
2

SrGdGa
3
O
7


SrGd
4
(SiO
4
)
3
O •

©2001 CRC Press LLC
Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce

3+
Pr
3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb
3+
SrLaGa
3
O
7 • •
SrMoO
4 •


SrWO
4



SrY
4
(SiO
4
)
3
O
• • •
Sr
2
Ca
3
(PO
4
)
3

Sr
3
Ca
2
(PO
4
)
3

Sr
3
Ga

2
Ge
4
O
14

Sr
3
Ga
2
GeO
14 •
Sr
4
Ca(PO
4
)
3

Sr
5
(PO
4
)
3
• •
Tm
3
Al
5

O
12 •
YA1O
3 • • • • •
(Y,Er)AlO
3 • • •
(Y,Gd)AlO
3 •
YAl
3
(BO
3
)
4

YP
5
O
14

(Y,Nd)P
5
O
14

YScO
3 • • •
YVO
4 • • • • •
Y

2
O
3

• • •
Y
2
O
3
-ThO
2

• •
Y
2
SiO
5

Y
3
Al
3
O
12

Y
3
Al
3
O

12

(Y,Ce)
3
Al
5
O
12

(Y,Lu)
3
Al
5
O
12

Y
3
Ga
5
O
12

Y
3
Sc
2
Al
3
O

12

Y
3
Sc
2
Ga
3
O
12 • • •
Yb
3
Al
5
O
12 • •
ZrO
2
-Er
2
O
3 • • •
ZrO
2
-Y
2
O
3 •



Halides
BaF
2

BaF
2
-CeF
3

BaF
2
-GdF
3

BaF
2
-LaF
3

BaF
2
-YF
3

BaEr
2
F
8 • • •
©2001 CRC Press LLC
Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce
3+
Pr
3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb
3+
Ba(Y,Er)
2
F
8 •
Ba(Y,Yb)
2
F
8 •
BaYb

2
F
8 • • • • • •
CaF
2 • • • • •
CaLu
2
F
8

Ca
2
Y
5
F
19 •
CaF
2
-CeF
3

CaF
2
-ErF
3 • •
CaF
2
-ErF
3
-TmF

3 • •
CaF
2
-ErF
3
-TmF
3
-
YbF
3

CaF
2
-GdF
3 •
CaF
2
-HoF
3 • • •
CaF
2
-HoF
3
-ErF
3 •
CaF
2
-LaF
3 •
CaF

2
-NdF
3

CaF
2
-ScF
3

CaF
2
-SrF
2

CaF
2
-SrF
2
-BaF
2
-
YF
3
-LaF
3

CaF
2
-YF
3


• •
CaF
2
-YF
3
-NdF
3

CdF
2

CdF
2
-CeF
3

CdF
2
-GaF
3

CdF
2
-GdF
3

CdF
2
-LaF

3

CdF
2
-LuF
3

CdF
2
-ScF
3

CdF
2
-YF
3

CdF
2
-YF
3
-NdF
3

CeCl
3

CeF
3


CsGd
2
F
7

CsY
2
F
7

ErF
3
-HoF
3 •
ErLiF
4 •
GdF
3
-CaF
2

GdLiF
4

HoLiF
4 •
©2001 CRC Press LLC
Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce

3+
Pr
3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb
3+
KYF
4

KY
3
F
10

K
7
YF

5

K
5
(Nd,Ce)Li
2
F
10

K
5
NdLi
2
F
10

LaBr
3 •
LaCl
3 •
(La,Pr)Cl
3 • •
LaF
3 • •

• •
LaF
3
-SrF
2


LiCaAlF
6 •
LiErF
4 •
LiGdF
4

LiHoF
4 •
LiKYF
5

LiLuF
4 • •

• •
LiSrAlF
6 •
LiYF
4 • • • • • • •
Li(Y,Er)F
4 • •
LiYbF
4 • • •
MgF
2 •
MnF
2 •
α-NaCaCeF

6 •
α-NaCaErF
6 • • • •
α-NaCaYF
6 •
5NaF-9YF
3

Na
0.4
Y
0.6
F
2.2

PbCl
2

PrBr
3 •
PrCl
3 •
PrF
3 •
SrF
2


SrF
2

-(Y,Er)F
3 •
SrF
2
-CeF
3

SrF
2
-CeF
3
-GdF
3

SrF
2
-ErF
3 •
SrF
2
-GdF
3

SrF
2
-LaF
3

SrF
2

-LuF
3

SrF
2
-ScF
3

©2001 CRC Press LLC
Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
Crystal Ce
3+
Pr
3+
Nd
3+
Sm
3+
Eu
3+
Dy
3+
Ho
3+
Er
3+
Tm
3+
Yb

3+
SrF
2
-YF
3 •
Sr
2
Y
5
F
19 • • • •
TbF
3 •
YF
3



Oxyhalides
BaCaBO
3
F
• •
Ba
5
(PO
4
)
3
F •

CaF
2
-CeO
2

Ca
3
Sr
2
(PO
4
)
3
F

Ca
4
Sr(PO
4
)
3
F

Ca
5
(PO
4
)
3
F

• • •
Na
2
Nd
2
Pb
6
-
(PO
4
)
6
Cl
2

Pb
5
(PO
4
)
3
F •
Sr
5
(PO
4
)
3
F


Sr
5
(VO
4
)
3
Cl •
Sr
5
(VO
4
)
3
F •


Chalcogenides
La
2
O
2
S •
©2001 CRC Press LLC
1.1.4 Tables of Transition Metal Ion Lasers
Table 1.1.9
Transition Metal Ion Lasers


Optical pump




Mode of operation

AL — alexandrite (BeAl
2
O
4
:Cr) laser AML — actively mode-locked
ArL — argon-ion laser cw — continuous wave
D — frequency doubled p — pulsed
DL — dye laser qcw — quasi-continuous wave
ErLYF — Er:LiYF
4
(YLF) laser qs — Q-switched
ErYAG — Er:Y
3
Al
5
O
12
(YAG) laser PML — passively mode-locked
Hg — mercury arc lamp SML — synchronously mode-locked
KrL — krypton-ion laser
NdGL — Nd:glass laser
NdL — neodymium laser
NdYAG — Nd:Y
3
Al
5

O
12
(YAG) laser
NdYLF — Nd:LiYF
4
(YLF) laser
NdYAP — Nd:YAlO
3
(YAP) laser
RL — ruby (Al
2
O
3
:Cr) laser
RS — Raman-shifted
TiS — Ti:sapphire (Al
2
O
3
) laser
TmYAP — Tm:YAlO
3
(YAP) laser
TmHoYAG — Tm,Ho:Y
3
Al
5
O
12
(YAG) laser

W — tungsten arc lamp
Xe — xenon arc lamp
Titanium (Ti
3+
, 3d
1
)
Host
crystal
Laser
transition
Wavelength
( m)
Temp.
(K)
Optical
pump Mode Ref.
Al
2
O
3
2
E →
2
T
2
0.66–1.178 300 Ar laser cw 82–89
80 Ar laser cw 83
300 dye laser p 83, 90–96
300 Xe lamp p 91, 109–112

300 DNdYAP p 83, 84, 86, 92,
97–108
300 Cu laser p 1039
510 DNdYAG p 84
300 DNdYAG qs 99
300 Ar laser AML 110
300 DNdYAP SML 113
0.700–0.818 300 sun cw 1155
BeAl
2
O
4
2
E →
2
T
2
0.73–0.95 300 DNdYAG cw 170
300 DNdYAG
p 171,172
0.753–0.946 300
Xe lamp p 189
YA1O
3
2
E →
2
T
2
0.6116 300 DNdYAP p 59

©2001 CRC Press LLC
Vanadium (V
2+
, 3d
3
)
Host
crystal
Laser
transition
Wavelength
( m)
Temp.
(K)
Optical
pump Mode Ref.
CsCaF
3
4
T
2

4
A
2 1.24–1.33 80 Kr laser cw 582
MgF
2
4
T
2


4
A
2 1.07–1.16 80 Ar laser cw 261, 303–305
1.1213 77 Xe lamp p 488
Chromium (Cr
2+
, 3d
4
)
Host
crystal
Laser
transition
Wavelength
( m)
Temp.
(K)
Optical
pump Mode Ref.
CdMnTe
5
E →
5
T
2
2.515 300 RS NdYAG p 1031
5
E →
5

T
2
2.17–3.01 300 TmHoYAG p 1157
ZnS
5
E →
5
T
2
2.286–2.530 300 Co:MgF
2
L p 914
~2.35 300 Co:MgF
2
L p 915
2.134–2.799 300 Co:MgF
2
L p 914
~2.35 300 Co:MgF
2
L p 915
ZnSe
5
E →
5
T
2 2.134–2.799
300 Co:MgF
2
L p 914

2.138–2.760
300 TmYAP cw 1124
~2.35
300 Co:MgF
2
L p 915
Chromium (Cr
3+
, 3d
3
)
Host
crystal
Laser
transition
Wavelength
( m)
Temp.
(K)
Optical
pump Mode Ref.
Al
2
(WO
4
)
3
4
T
2


4
A
2
0.80 300 Kr laser cw 210
Al
2
O
3
2
E →
4
A
2
0.6929(R
2
) 300 Xe lamp p 125
0.6934 77 Hg lamp cw 126, 127
0.6934 77 Ar laser cw 128
0.6943(R
1
) 300 Xe lamp p 131–2, 138
0.6943(R
1
) 300 Hg lamp cw 133–4, 297
0.6943(R
1
) 300 Kr laser cw 135
0.7009(N
2

) 77 Xe lamp p 153
0.7041(N
1
) 77 Xe lamp p 153
0.6943–0.6952 300–500 Xe lamp p 137
0.7670 300 Xe lamp p 197
Be
3
Al
2
Si
6
O
18
2
E →
4
A
2
0.685 300 RS-DNdL p 123
4
T
2

4
A
2
0.720–0.842 300 Kr laser cw 164, 165
0.720–0.842 300 Xe lamp p 166
BeAl

2
O
4
2
E →
4
A
2
~0.680 77 Xe lamp p 118
0.6803 300 Xe lamp p 120
©2001 CRC Press LLC
Chromium (Cr
3+
, 3d
3
)—continued
Host
crystal
Laser
transition
Wavelength
( m)
Temp.
(K)
Optical
pump Mode Ref.
BeAl
2
O
4

2
E →
4
A
2
0.6804 300 Xe lamp p 121,122
4
T
2

4
A
2
0.70–0.82 — Hg lamp cw 140–142
300 Kr laser cw 143
BeAl
2
O
4
4
T
2

4
A
2
0.70–0.82 — Xe lamp cw 141, 142
300–330 Xe lamp p 120, 144–6
330–370 Xe lamp p 120, 145,
148, 149

548–583 Xe lamp p 142, 146
300–370 Xe lamp p 141, 142,
144, 147,
148, 150
Xe lamp PML 142, 151
Xe lamp AML 142
0.701–0.818 300 Xe lamp p 121, 154
0.744–0.788 300 Hg lamp cw 179
BeAl
6
O
10
4
T
2

4
A
2
0.79–0.87 300 DNdYAG p 204
Ca
3
Ga
2
Ge
4
O
14
4
T

2

4
A
2
0.87–1.21 300 RL, DL p 241, 1017
(Gd,Ca)
3
-
(Ga,Mn,Zr)
5
O
12
4
T
2

4
A
2
0.774–0.814 300 Xe lamp p 198
Gd
3
Ga
5
O
12
4
T
2


4
A
2
0.769 300 Kr laser cw 174
Gd
3
Sc
2
Al
3
O
12
4
T
2

4
A
2
0.75–0.81 300 Xe lamp p
183–185
Kr laser cw
174–5, 182
Ar laser cw
174–5, 182
Gd
3
Sc
2

Ga
3
O
12
4
T
2

4
A
2
0.742–0.842 300 Xe lamp p 177, 178
Kr laser cw
174–176
Ar laser cw
174–176
KZnF
3
4
T
2

4
A
2
0.766–0.865 300 Kr laser cw 193
dye laser p 191, 192
ruby laser qcw 194
Xe lamp p 195
0.775–0.816 80 Kr laser cw 191, 192

0.790–0.825 200 Kr laser cw 191, 192
(La,Lu)
3
(La,Ga)
2
-
Ga
3
O
12
4
T
2

4
A
2
0.83 300 Kr laser cw 174
La
3
Ga
5
GeO
14
4
T
2

4
A

2
0.88–1.22 300 ruby laser p 241, 242,
1017
La
3
Ga
5.5
Nb
0.5
O
14
4
T
2

4
A
2
0.9–1.25 300 ruby laser p 240, 1017
©2001 CRC Press LLC
Chromium (Cr
3+
, 3d
3
)—continued
Host
crystal
Laser
transition
Wavelength

( m)
Temp.
(K)
Optical
pump Mode Ref.
La
3
Ga
5
GeO
14
4
T
2

4
A
2
0.88–1.22 300 ruby laser p 241, 242,
1017
La
3
Ga
5.5
Nb
0.5
O
14
4
T

2

4
A
2
0.9–1.25 300 ruby laser p 240, 1017
La
3
Ga
5
SiO
14
4
T
2

4
A
2
0.815–1.22 300 Kr laser cw 209, 1017
ruby laser p 208
La
3
Ga
5.5
Ta
0.5
O
14
4

T
2

4
A
2
0.925–1.24 300 ruby laser p 240, 241
LiCaAlF
6
4
T
2

4
A
2
0.72–0.84 300 Kr laser cw 162
Xe lamp p 163
LiSr
0.8
Ca
0.2
AlF
6
4
T
2

4
A

2
0.750–0.950 300 Xe lamp p 186
LiSrAlF
6
4
T
2

4
A
2
0.780–1.010 300 Xe lamp p 201
0.78–0.92 300 Kr laser cw 196, 199
0.809–0.910 300 LD PML 894
0.815–0.915 300 NdYLF p 200
~0.825–0.875 300 LD PML 1066
LiSrCrF
6
4
T
2

4
A
2
0.890 300 TiS laser p 243
LiSrGaF
6
4
T

2

4
A
2
0.820 300 Kr laser p 212, 1025
Na
3
Ga
3
Li
3
F
12
4
T
2

4
A
2
0.748–0.832 300 Kr laser cw 180
ScBeAlO
4
4
T
2

4
A

2
0.792 300 Kr laser cw 206
ScBO
3
4
T
2

4
A
2
0.787–0.892 300 Kr laser cw 162, 202,
203
Sr
3
Ga
2
Ge
4
O
14
4
T
2

4
A
2
0.895 300 ruby laser p 1017
0.90–1.15 300 ruby laser p 241, 242

SrAlF
5
4
T
2

4
A
2
0.852–1.005 300 Kr laser cw 227, 228
Y
3
Al
5
O
12
4
T
2

4
A
2
0.6874 ~77 Xe lamp p 124
Y
3
Ga
5
O
12

4
T
2

4
A
2
0.74 300 Kr laser cw 173
Y
3
Sc
2
Al
3
O
12
4
T
2

4
A
2
0.767 300 Kr laser cw 196
Y
3
Sc
2
Ga
3

O
12
4
T
2

4
A
2
0.76 300 Kr laser cw 173
ZnWO
4
4
T
2

4
A
2
0.98–1.09 77 Kr laser cw 271
0.98–1.09 300 dye laser p 271

×