Tải bản đầy đủ (.pdf) (58 trang)

Luận văn đề tài Ứng dụng bài toán nội suy Lagrange và khai triển Tatlor

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (461.45 KB, 58 trang )


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG…………………













LUẬN VĂN

Ứng dụng bài toán nội suy
Lagrange và khai triển Tatlor


1
Mu
.
cLu
.
c
Mo
.


d¯ ˆa
`
u 3
1 C´ac b`ai to´an nˆo
.
i suy cˆo
˙’
d¯ i ˆe
˙’
n6
1.1 B`ai to´an nˆo
.
isuyLagrange 6
1.1.1 Ba`i toa´n nˆo
.
i suy Lagrange . . . . . . . . . . . . . . . . . . . . 6
1.1.2 D
-
ath´u
.
cnˆo
.
i suy Lagrange . . . . . . . . . . . . . . . . . . . . 6
1.2 B`ai to´an nˆo
.
isuyTaylor 7
1.2.1 Ba`i toa´n nˆo
.
isuyTaylor 7
1.2.2 D

-
ath´u
.
cnˆo
.
isuyTaylor 7
1.3 Ba`i toa´n nˆo
.
isuyNewton 7
1.3.1 Ba`i toa´n nˆo
.
isuyNewton 7
1.3.2 D
-
ath´u
.
cnˆo
.
isuyNewton 7
1.4 Ba`i toa´n nˆo
.
isuyHermite 8
1.4.1 Ba`i toa´n nˆo
.
isuyHermite 8
1.4.2 D
-
ath´u
.
cnˆo

.
isuyHermite 8
2Mˆo
.
tsˆo
´
´u
.
ng du
.
ng cu
˙’
a cˆong th´u
.
cnˆo
.
i suy 13
2.1 Mˆo
.
tsˆo
´
´u
.
ng du
.
ng cu
˙’
a cˆong th´u
.
cnˆo

.
i suy Lagrange . . . . . . . . . . . 13
2.1.1 Cˆong th´u
.
cnˆo
.
i suy Lagrange . . . . . . . . . . . . . . . . . . . 13
2.1.2 Mˆo
.
tsˆo
´
´u
.
ng du
.
ng 18
2.2 Mˆo
.
tsˆo
´
´u
.
ng du
.
ng cu
˙’
a c´ac cˆong th´u
.
cnˆo
.

i suy kh´ac . . . . . . . . . . . 28
2.2.1 Cˆong th´u
.
cnˆo
.
isuyTaylor 28
2.2.2 Cˆong th´u
.
cnˆo
.
isuyNewton 31
2.2.3 Cˆong th´u
.
cnˆo
.
i suy Hermite . . . . . . . . . . . . . . . . . . . 32
2.3 Ba`i tˆa
.
p 35
3
´
U
.
ng du
.
ng cˆong th´u
.
cnˆo
.
i suy d¯ˆe

˙’
u
.
´o
.
clu
.
o
.
.
ng v`a xˆa
´
pxı
˙’
h`am sˆo
´
38
3.1 U
.
´o
.
clu
.
o
.
.
ng h`am sˆo
´
38
3.1.1 U

.
´o
.
clu
.
o
.
.
ng h`am sˆo
´
theo c´ac n´ut nˆo
.
i suy Lagrange . . . . . . . 38
3.1.2 U
.
´o
.
clu
.
o
.
.
ng h`am sˆo
´
theo c´ac n´ut nˆo
.
i suy Chebyshev . . . . . . 41
3.2 Mˆo
.
tsˆo

´
phu
.
o
.
ng ph´ap kh´ac d¯ˆe
˙’
u
.
´o
.
clu
.
o
.
.
ng h`am sˆo
´
47
3.3 Xˆa
´
pxı

ha`m sˆo
´
theo d¯a th´u
.
cnˆo
.
isuy 50

2
3.4 Ba`i tˆa
.
p 54
Kˆe
´
t luˆa
.
ncu

a luˆa
.
n v˘an 55
Ta`i liˆe
.
u tham kha

o 57
3
Mo
.

d¯ ˆa
`
u
Trong qua´ trı`nh tı´nh toa´n, nhiˆe
`
u khi ta cˆa
`
n pha


ixa´cd¯i
.
nh gia´ tri
.
cu

amˆo
.
t ha`m
sˆo
´
f(x)ta
.
imˆo
.
td¯iˆe

m tu`y y´ cho tru
.
´o
.
c, trong khi d¯o´d¯iˆe
`
ukiˆe
.
nchı

m´o
.

ichobiˆe
´
tmˆo
.
t
sˆo
´
gia´ tri
.
(r`o
.
ira
.
c) cu

a ha`m sˆo
´
va`cu

ad¯a
.
o ha`m ha`m sˆo
´
d¯ ˆe
´
ncˆa
´
p na`o d¯o´cu

a no´ ta

.
i
mˆo
.
tsˆo
´
d¯ i ˆe

m x
1
,x
2
, ··· ,x
k
cho tru
.
´o
.
c.
V´o
.
inh˜u
.
ng tru
.
`o
.
ng ho
.
.

pnhu
.
vˆa
.
y, ngu
.
`o
.
i ta thu
.
`o
.
ng tı`m ca´ch xˆay du
.
.
ng mˆo
.
t ha`m
sˆo
´
P (x)da
.
ng d¯o
.
n gia

nho
.
n, thu
.

`o
.
ng la` ca´c d¯a th´u
.
cd¯a
.
isˆo
´
, tho

ama
˜
n ca´c d¯iˆe
`
ukiˆe
.
n
d¯ a
˜
cho. Ngoa`i ra, ta
.
inh˜u
.
ng gia´ tri
.
x ∈ R ma` x khˆong tru`ng v´o
.
i x
1
,x

2
, ··· ,x
k
, thı`
P (x) ≈ f(x) (xˆa
´
pxı

theo mˆo
.
td¯ˆo
.
chı´nh xa´c na`o d¯o´).
Ha`m sˆo
´
P (x)d¯u
.
o
.
.
c xˆay du
.
.
ng theo ca´ch v`u
.
a mˆo ta

trˆen d¯u
.
o

.
.
cgo
.
i la` ha`m nˆo
.
i suy
cu

a f(x); ca´c d¯iˆe

m x
1
,x
2
, ···,x
k
thu
.
`o
.
ng d¯u
.
o
.
.
cgo
.
ila`ca´cnu´t nˆo
.

i suy va` ba`i toa´n
xˆay du
.
.
ng ha`m P(x)nhu
.
vˆa
.
yd¯u
.
o
.
.
cgo
.
ila`Ba`i toa´n nˆo
.
i suy.
Su
.

du
.
ng ha`m (d¯a th´u
.
c) nˆo
.
i suy P (x), ta dˆe
˜
da`ng tı´nh d¯u

.
o
.
.
c gia´ tri
.
tu
.
o
.
ng d¯ˆo
´
i
chı´nh xa´c cu

a ha`m sˆo
´
f(x)ta
.
i x ∈ R tu`y y´ cho tru
.
´o
.
c. T`u
.
d¯ o´, ta co´ thˆe

tı´nh gˆa
`
n

d¯u´ng gia´ tri
.
d¯ a
.
oha`mva` tı´ch phˆan cu

a no´ trˆen R.
Ca´c ba`i toa´n nˆo
.
i suy cˆo

d¯ i ˆe

n ra d¯`o
.
it`u
.
rˆa
´
ts´o
.
mva`d¯o´ng vai tro` rˆa
´
t quan tro
.
ng
trong thu
.
.
ctˆe

´
. Do d¯o´, viˆe
.
c nghiˆen c´u
.
u ca´c ba`i toa´n nˆo
.
i suy la` rˆa
´
t co´ y´ nghı
˜
a.
O
.
˙’
ca´c tru
.
`o
.
ng phˆo

thˆong, ly´ thuyˆe
´
tvˆe
`
vˆa
´
nd¯ˆe
`
na`y khˆong d¯u

.
o
.
.
cd¯ˆe
`
cˆa
.
p, nhu
.
ng
nh˜u
.
ng ´u
.
ng du
.
ng so
.
cˆa
´
pcu

a no´ cu
˜
ng ”ˆa

nhiˆe
.
n” khˆong ı´t, ch˘a


ng ha
.
n trong ca´c
phu
.
o
.
ng trı`nh d¯u
.
`o
.
ng ho˘a
.
cphu
.
o
.
ng trı`nh m˘a
.
tbˆa
.
c hai, trong ca´c d¯˘a

ng th ´u
.
cda
.
ng
phˆan th´u

.
cva`d¯˘a
.
cbiˆe
.
t la` viˆe
.
c´u
.
ng du
.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange va` khai triˆe

n
Taylor d¯ˆe

gia

imˆo
.
tsˆo
´
ba`i toa´n kho´ trong ca´c d¯ˆe
`
thi ho
.

c sinh gio

i ca´c cˆa
´
p.
Vı` vˆa
.
y, viˆe
.
c hı`nh tha`nh mˆo
.
t chuyˆen d¯ˆe
`
cho
.
nlo
.
cnh˜u
.
ng vˆa
´
nd¯ˆe
`
co
.
ba

n nhˆa
´
tvˆe

`
ca´c ba`i toa´n nˆo
.
i suy, du
.
´o
.
igo´cd¯ˆo
.
toa´n phˆo

thˆong, d¯˘a
.
cbiˆe
.
t la` nh˜u
.
ng ´u
.
ng du
.
ng cu

a
no´ trong qua´ trı`nh gia

imˆo
.
tsˆo
´

da
.
ng toa´n kho´ la` rˆa
´
tcˆa
`
n thiˆe
´
t. Ho
.
nn˜u
.
a, chuyˆen
d¯ ˆe
`
na`y cu
˜
ng co´ thˆe

la`m ta`i liˆe
.
u tham kha

o cho ca´c gia´o viˆen gio

iva` ca´c sinh viˆen
nh˜u
.
ng n˘am d¯ˆa
`

ucu

abˆa
.
cd¯a
.
iho
.
c.
´
Ytu
.
o
.

ng muˆo
´
n thu
.
.
chiˆe
.
n luˆa
.
n v˘an na`y hı`nh tha`nh tru
.
´o
.
c khi cuˆo
´

n sa´ ch chuyˆen
kha

o [2] ra d¯`o
.
i. D
-
ˆay v`u
.
a la` mˆo
.
t thuˆa
.
nlo
.
.
iv`u
.
ala`mˆo
.
t kho´ kh˘an cho nˆo
˜
lu
.
.
c tı`m kiˆe
´
m
4
nh˜u

.
ng ne´t m´o
.
i cho luˆa
.
n v˘an cu

a ta´c gia

, vı` cuˆo
´
n sa´ch trˆen la` mˆo
.
t ta`i liˆe
.
urˆa
´
t quı´
gia´, trong khi d¯o´hˆa
`
unhu
.
chu
.
a co´ mˆo
.
t ta`i liˆe
.
u toa´n so
.

cˆa
´
p na`o d¯ˆe
`
cˆa
.
pd¯ˆe
´
nvˆa
´
nd¯ˆe
`
na`y mˆo
.
t ca´ch tro
.
nve
.
n. Do d¯o´, luˆa
.
n v˘an khˆong qua´ d¯ˆe
`
cˆa
.
psˆauvˆe
`
ly´ thuyˆe
´
t ma` cˆo
´

g˘a
´
ng tı`m kiˆe
´
mnh˜u
.
ng ´u
.
ng du
.
ng cu

ano´va`o viˆe
.
c gia

iva` sa´ng ta´c ca´c ba`i tˆa
.
po
.

phˆo

thˆong, d¯˘a
.
cbiˆe
.
t la` nh˜u
.
ng ´u

.
ng du
.
ng thu
.
`o
.
ng g˘a
.
pcu

a cˆong th´u
.
cnˆo
.
i suy Lagrange va`
khai triˆe

n Taylor.
Luˆa
.
n v˘an da`y 56 trang, gˆo
`
m ca´c phˆa
`
nMu
.
clu
.
c, Mo

.

d¯ ˆa
`
u, ba chu
.
o
.
ng nˆo
.
i dung,
kˆe
´
t luˆa
.
nva` ta`i liˆe
.
u tham kha

o:
Chu
.
o
.
ng 1: Ca´c ba`i toa´n nˆo
.
i suy cˆo

d¯ i ˆe


n.
Nˆo
.
i dung chu
.
o
.
ng na`y trı`nh ba`y mˆo
.
t ca´ch co
.
ba

n nhˆa
´
tvˆe
`
ca´c ba`i toa´n nˆo
.
i suy
cˆo

d¯ i ˆe

n, d¯o´ la` Ba`i toa´n nˆo
.
i suy Lagrange, Ba`i toa´n nˆo
.
i suy Taylor, Ba`i toa´n nˆo
.

i suy
Newton va` Ba`i toa´n nˆo
.
i suy Hermite.
Chu
.
o
.
ng 2: Mˆo
.
tsˆo
´
´u
.
ng du
.
ng cu

a cˆong th´u
.
cnˆo
.
i suy.
D
-
ˆay la` mˆo
.
t trong nh˜u
.
ng nˆo

.
i dung tro
.
ng tˆam cu

a luˆa
.
n v˘an. V´o
.
itˆa
`
m quan tro
.
ng
o
.

phˆo

thˆong, cˆong th´u
.
cnˆo
.
i suy Lagrange va`nh˜u
.
ng ´u
.
ng du
.
ng cu


a no´ d¯u
.
o
.
.
cd¯ˆe
`
cˆa
.
p
tha`nh mˆo
.
t phˆa
`
n riˆeng trong chu
.
o
.
ng na`y v´o
.
inh˜u
.
ng phu
.
o
.
ng pha´p gia

i toa´n kha´ d¯a

da
.
ng va`mˆo
.
tsˆo
´
lu
.
o
.
.
ng ba`i tˆa
.
pd¯ˆe
`
xuˆa
´
t kha´ phong phu´. Nhiˆe
`
ud¯˘a

ng th´u
.
cdu
.
´o
.
ida
.
ng

phˆan th´u
.
c co´ nguˆo
`
ngˆo
´
ct`u
.
cˆong th´u
.
cnˆo
.
i suy Lagrange d¯a
˜
d¯ u
.
o
.
.
c luˆa
.
n v˘an pha´t
hiˆe
.
n. Nhiˆe
`
u ba`i toa´n thi cho
.
nho
.

c sinh gio

i quˆo
´
cgiava` quˆo
´
ctˆe
´
d¯ a
˜
d¯ u
.
o
.
.
c gia

ib˘a
`
ng
ca´ch a´p du
.
ng cˆong th´u
.
cnˆo
.
i suy na`y. Phˆa
`
n co`n la
.

icu

a chu
.
o
.
ng trı`nh ba`y mˆo
.
tsˆo
´
´u
.
ng du
.
ng cu

a ca´c cˆong th´u
.
cnˆo
.
i suy co`n la
.
i. Mˆo
.
tsˆo
´
ba`i tˆa
.
p da`nh cho ba
.

nd¯o
.
ccu
˜
ng
d¯ u
.
o
.
.
c gi´o
.
i thiˆe
.
uo
.

phˆa
`
n cuˆo
´
i chu
.
o
.
ng.
Chu
.
o
.

ng 3:
´
U
.
ng du
.
ng cˆong th´u
.
cnˆo
.
isuyd¯ˆe

u
.
´o
.
clu
.
o
.
.
ng va` xˆa
´
pxı

ha`m sˆo
´
.
Chu
.

o
.
ng na`y ta´ch riˆeng mˆo
.
t´u
.
ng du
.
ng cu

a ca´c cˆong th´u
.
cnˆo
.
i suy d¯ˆe

u
.
´o
.
clu
.
o
.
.
ng
va`xˆa
´
pxı


ha`m sˆo
´
.Mˆo
.
tsˆo
´
da
.
ng toa´n kho´ o
.

phˆo

thˆong liˆen quan d¯ˆe
´
nvˆa
´
nd¯ˆe
`
na`y
d¯ a
˜
d¯ u
.
o
.
.
cd¯ˆe
`
cˆa

.
p, trong d¯o´ co´ nh˜u
.
ng ba`i trong ca´c d¯ˆe
`
thi cho
.
nho
.
c sinh gio

i quˆo
´
c
gia va` quˆo
´
ctˆe
´
.Mˆo
.
tsˆo
´
phˆa
`
ncu

a luˆa
.
n v˘an d¯a
˜

d¯ u
.
o
.
.
c d¯˘ang ta

i trong ca´c ky

yˆe
´
uhˆo
.
i
nghi
.
chuyˆen nga`nh, ch˘a

ng ha
.
n [1].
Luˆa
.
n v˘an d¯u
.
o
.
.
c hoa`n tha`nh nh`o
.

su
.
.
hu
.
´o
.
ng dˆa
˜
n khoa ho
.
cva` nhiˆe
.
t tı`nh cu

aTiˆe
´
n
sy
˜
Tri
.
nh D
-
a`o Chiˆe
´
n - Ngu
.
`o
.

i Thˆa
`
yrˆa
´
t nghiˆem kh˘a
´
cva`tˆa
.
n tˆam trong cˆong viˆe
.
c,
truyˆe
`
nd¯a
.
t nhiˆe
`
ukiˆe
´
nth´u
.
c quı´ ba´u cu
˜
ng nhu
.
kinh nghiˆe
.
m nghiˆen c´u
.
u khoa ho

.
c
trong suˆo
´
t th`o
.
i gian nghiˆen c´u
.
ud¯ˆe
`
ta`i. Chı´nh vı` vˆa
.
y ma` ta´c gia

luˆon to

lo`ng biˆe
´
t
o
.
n chˆan tha`nh va` sˆau s˘a
´
cd¯ˆo
´
iv´o
.
i Thˆa
`
y gia´o hu

.
´o
.
ng dˆa
˜
n-Tiˆe
´
nsy
˜
Tri
.
nh D
-
a`o Chiˆe
´
n.
5
Nhˆan d¯ˆay, ta´c gia

xin d¯u
.
o
.
.
c ba`y to

lo`ng biˆe
´
to
.

n chˆan tha`nh d¯ˆe
´
n: Ban Gia´m
Hiˆe
.
u, Pho`ng d¯a`o ta
.
oD
-
a
.
iho
.
cva` sau D
-
a
.
iho
.
c, Khoa toa´n cu

a tru
.
`o
.
ng D
-
a
.
iho

.
c Qui
Nho
.
n, cu`ng quı´ thˆa
`
y cˆo gia´o d¯a
˜
tham gia gia

ng da
.
yva`hu
.
´o
.
ng dˆa
˜
n khoa ho
.
ccho
l´o
.
p cao ho
.
c toa´n kho´a 8. UBND tı

nh, So
.


gia´o du
.
cva` d¯a`o ta
.
otı

nh Gia Lai, Ban
Gia´m Hiˆe
.
u tru
.
`o
.
ng THPT Ia Grai d¯a
˜
cho ta´c gia

co
.
hˆo
.
iho
.
ctˆa
.
p, cu`ng v´o
.
i quı´ thˆa
`
y

cˆo gia´o cu

a nha` tru
.
`o
.
ng d¯a
˜
d¯ ˆo
.
ng viˆen, se

chia cˆong viˆe
.
cva`ta
.
omo
.
id¯iˆe
`
ukiˆe
.
n thuˆa
.
n
lo
.
.
id¯ˆe


ta´c gia

nghiˆen c´u
.
uva` hoa`n tha`nh luˆa
.
n v˘an na`y.
Trong qua´ trı`nh hoa`n tha`nh luˆa
.
n v˘an, ta´c gia

co`n nhˆa
.
nd¯u
.
o
.
.
csu
.
.
quan tˆam d¯ˆo
.
ng
viˆen cu

a ca´c ba
.
nd¯ˆo
`

ng nghiˆe
.
p, ca´c anh chi
.
em trong ca´c l´o
.
p cao ho
.
c kho´a VI I, VIII,
XIX cu

a tru
.
`o
.
ng D
-
a
.
iho
.
c Qui Nho
.
n. Ta´c gia

xin chˆan tha`nh ca

mo
.
ntˆa

´
tca

nh˜u
.
ng
su
.
.
quan tˆam d¯ˆo
.
ng viˆen d¯o´.
D
-
ˆe

hoa`n tha`nh luˆa
.
n v˘an na`y, ta´c gia

d¯ a
˜
tˆa
.
p trung rˆa
´
t cao d¯ˆo
.
trong hoc tˆa
.

pva`
nghiˆen c´u
.
u khoa ho
.
c, cu
˜
ng nhu
.
rˆa
´
tcˆa

n thˆa
.
n trong nhˆan chˆe
´
ba

n. Trong d¯o´ ı´t nhiˆe
`
u
ha
.
nchˆe
´
vˆe
`
th`o
.

i gian cu
˜
ng nhu
.
trı`nh d¯ˆo
.
hiˆe

ubiˆe
´
tnˆen trong qua´ trı`nh thu
.
.
chiˆe
.
n
khˆong thˆe

tra´nh kho

inh˜u
.
ng thiˆe
´
u so´t, ta´c gia

rˆa
´
t mong nhˆa
.

nd¯u
.
o
.
.
csu
.
.
chı

ba

ocu

a
quı´ thˆa
`
ycˆova`nh˜u
.
ng go´p y´ cu

aba
.
nd¯o
.
cd¯ˆe

luˆa
.
n v˘an d¯u

.
o
.
.
c hoa`n thiˆe
.
nho
.
n.
Quy Nho
.
n, tha´ng n˘am 2008
Ta´c gia

6
Chu
.
o
.
ng 1
C´ac b`ai to´an nˆo
.
i suy cˆo
˙’
d¯ i ˆe
˙’
n
Trong chu
.
o

.
ng na`y, luˆa
.
nv˘and¯ˆe
`
cˆa
.
pmˆo
.
tsˆo
´
ba`i toa´n nˆo
.
i suy cˆo

d¯ i ˆe

nse
˜
su
.

du
.
ng
o
.

ca´c chu
.

o
.
ng sau, d¯o´ la`: Ba`i toa´n nˆo
.
i suy Lagrange, Bai toa´n nˆo
.
i suy Taylor, Ba`i
toa´n nˆo
.
i suy Newton va` Ba`i toa´n nˆo
.
i suy Hermite. L`o
.
i gia

i cho ca´c ba`i toa´n na`y la`
ca´c d¯a th´u
.
cnˆo
.
i suy tu
.
o
.
ng ´u
.
ng ma` ch´u
.
ng minh chi tiˆe
´

td¯a
˜
d¯ u
.
o
.
.
c trı`nh ba`y trong [2]
1.1 B`ai to´an nˆo
.
i suy Lagrange
1.1.1 Ba`i toa´n nˆo
.
i suy Lagrange
Cho ca´c sˆo
´
thu
.
.
c x
i
,a
i
,v´o
.
i x
i
= x
j
,v´o

.
imo
.
i i = j, i, j =1, 2, ···,N.Ha
˜
yxa´c
d¯ i
.
nh d¯a th´u
.
c L(x) co´bˆa
.
c degL(x) ≤ N −1 va` tho

aca´c d¯iˆe
`
ukiˆe
.
n
L(x
i
)=a
i
, ∀i =1, 2, ···,N
.
1.1.2 D
-
ath´u
.
cnˆo

.
i suy Lagrange
Ky´ hiˆe
.
u
L
i
(x)=
N

j=1,j=i
x − x
j
x
i
− x
j
; i =1, 2, ··· ,N.
Khi d¯o´, d¯a th´u
.
c
L(x)=
N

i=1
a
i
L
i
(x)

la` d¯a th ´u
.
c duy nhˆa
´
t tho

ama
˜
nd¯iˆe
`
ukiˆe
.
ncu

a ba`i toa´n nˆo
.
i suy Lagrange va` ta go
.
i
d¯a th´u
.
c na`y la` d¯a th´u
.
cnˆo
.
i suy Lagrange.
7
1.2 B`ai to´an nˆo
.
i suy Taylor

1.2.1 Ba`i toa´n nˆo
.
i suy Taylor
Cho ca´c sˆo
´
thu
.
.
c x
0
,a
i
, v´o
.
i i =0, 1, ···,N − 1.Ha
˜
y xa´c d¯i
.
nh d¯a th´u
.
c T (x) co´
bˆa
.
c degT (x) ≤ N − 1 va` tho

ama
˜
nca´c d¯iˆe
`
ukiˆe

.
n
T
i
(x
0
)=a
i
, ∀i =0, 1, ··· ,N − 1.
1.2.2 D
-
ath´u
.
cnˆo
.
i suy Taylor
D
-
ath´u
.
c
T (x)=
N −1

i=0
a
i
i!
(x − x
0

)
i
la` d¯a th´u
.
c duy nhˆa
´
t tho

ama
˜
nd¯iˆe
`
ukiˆe
.
ncu

a ba`i toa´n nˆo
.
i suy Taylor va`go
.
i d¯a th ´u
.
c
na`y la` d¯a th´u
.
cnˆo
.
i suy Taylor.
1.3 Ba`i toa´n nˆo
.

i suy Newton
1.3.1 Ba`i toa´n nˆo
.
i suy Newton
Cho ca´c sˆo
´
thu
.
.
c x
i
,a
i
, v´o
.
i i =1, 2, ··· ,N.Ha
˜
y xa´c d¯i
.
nh d¯a th´u
.
c N(x) co´bˆa
.
c
degN(x) ≤ N −1 va` tho

ama
˜
nca´c d¯iˆe
`

ukiˆe
.
n
N
i−1
(x
i
)=a
i
, ∀i =1, 2, ··· ,N.
1.3.2 D
-
ath´u
.
cnˆo
.
i suy Newton
Ky´ hiˆe
.
u
R
i
(x
1
,x
2
, ··· ,x
i
,x)=


x
x
1

t
x
2

t
1
x
3
···

t
i−2
x
i
dt
i−1
dt
2
.dt
1
.dt; i =1, 2, ··· ,N.
khi d¯o´, d¯a th´u
.
c
N(x)=
N


i=1
a
i
R
i−1
(x
1
,x
2
, , x
i−1
,x)
= a
1
+ a
2
R(x
1
,x)+a
3
R
2
(x
1
,x
2
,x)+···+ a
N
R

N −1
(x
1
, ···,x
N −1
,x)
la` d¯a th´u
.
c duy nhˆa
´
t tho

ama
˜
nd¯iˆe
`
ukiˆe
.
ncu

a ba`i toa´n nˆo
.
i suy Newton va` ta go
.
id¯a
th ´u
.
c na`y la` d¯a th´u
.
cnˆo

.
i suy Newton
8
Nhˆa
.
n xe´t 1.1. V´o
.
i x
i
= x
0
, v´o
.
imo
.
i i =1, 2, ··· ,N, thı`
R
i
(x
0
,x
1
, ···,x
i−1
,x)=R
i

x
0
, ···,x

0
  
i lˆa
`
n
,x

=

x
x
0

t
x
0

t
1
x
0
···

t
i−2
x
0
dt
i−1
dt

2
.dt
1
.dt
=
(x − x
0
)
i
i!
; v´o
.
i i =1, 2, ···,N
Khi d¯o´
N(x)=
N

i=1
a
i
R
i

x
0
, ···,x
0
  
i lˆa
`

n
,x

=
= a
0
+ a
1
R(x
0
,x)+a
2
R
2
(x
0
,x
0
,x)+···+ a
N −1
R
N −1

x
0
, ···,x
0
  
N −1 lˆa
`

n
,x

= a
0
+ a
1
(x −x
0
)+a
2
(x − x
0
)
2
2
+ ···+ a
N −1
(x − x
0
)
N −1
(N − 1)!
=
N −1

i=0
a
i
(x − x

0
)
i
i!
≡ T(x).
Vˆa
.
y, v´o
.
i x
i
= x
0
, ; ∀i =1, 2, ···,N, thı` d¯a th´u
.
cnˆo
.
i suy Newton chı´nh la` d¯a th´u
.
c
nˆo
.
i suy Taylor.
1.4 Ba`i toa´n nˆo
.
i suy Hermite
1.4.1 Ba`i toa´n nˆo
.
i suy Hermite
Cho ca´c sˆo

´
thu
.
.
c x
i
,a
ki
,i=1, 2, ···,n; k =0, 1, ··· ,p
i
− 1 va` x
i
= x
j
,v´o
.
i
mo
.
i i = j, trong d¯o´ p
1
+ p
2
+ ···+ p
n
= N.Ha
˜
y xa´c d¯i
.
nh d¯a th´u

.
c H(x) co´bˆa
.
c
degH(x) ≤ N − 1 va` tho

ama
˜
nca´c d¯iˆe
`
ukiˆe
.
n
H
(k)
(x
i
)=a
ki
, ∀i =1, 2, ···,n; ∀k =0, 1, ···,p
i
− 1
1.4.2 D
-
ath´u
.
cnˆo
.
i suy Hermite
Ky´ hiˆe

.
u
W (x)=
n

j=1
(x −x
j
)
p
j
;
9
W
i
(x)=
W (x)
(x − x
i
)
p
i
=
n

j=1,j=i
(x − x
j
)
p

j
; i =1, 2, ··· ,n
Go
.
i d¯oa
.
n khai triˆe

n Taylor d¯ˆe
´
ncˆa
´
pth´u
.
p
i
− 1 − k,v´o
.
i k =0, 1, ··· ,l; l =
0, 1, ···,p
i
− 1, ta
.
i x = x
i
cu

a ha`m sˆo
´
1

W
i
(x)
(i =1, 2, ··· ,n)la`
T

1
W
i
(x)

(p
i
−1−k)
(x=x
i
)
=
p
i
−1−k

l=0

1
W
i
(x)

(l)

(x=x
i
)
(x − x
i
)
l
l!
.
khi d¯o´, d¯a th´u
.
c
H(x)=
n

i=1
p
i
−1

k=0
a
ki
(x − x
i
)
k
k!
W
i

(x)T

1
W
i
(x)

(p
i
−1−k)
(x=x
i
)
.
la` d¯a th´u
.
c duy nhˆa
´
t tho

ama
˜
nd¯iˆe
`
ukiˆe
.
ncu

a ba`i toa´n nˆo
.

i suy Hermite va`tago
.
id¯a
th ´u
.
c na`y la` d¯a th´u
.
cnˆo
.
i suy Hermite.
Nhˆa
.
n xe´t 1.2.
V´o
.
i n = 1, thı` i =1va` p
1
= N. Khi d¯o´, ta co´
W (x)=(x − x
1
)
N
;
W
1
(x)=
W (x)
(x − x
1
)

N
=1.
Do d¯o´, d¯oa
.
n khai triˆe

n
T

1
W
1
(x)

(N −1−k)
(x=x
1
)
= T

1

(N −1−k)
(x=x
1
)
=1.
Khi d¯o´, ta co´
H(x)=
N −1


k=0
a
k1
(x − x
1
)
k
k!
≡ T (x).
Vˆa
.
y, v´o
.
i n = 1, thı` d¯a th´u
.
cnˆo
.
i suy Hermite chı´nh la` d¯a th´u
.
cnˆo
.
i suy Taylor.
Nhˆa
.
n xe´t 1.3.
V´o
.
i k = 0, thı` p
i

= 1, v´o
.
imo
.
i i =1, 2, ···,n. Khi d¯o´
p
1
+ p
2
+ ···+ p
n
= N,
10
hay n = N. Do d¯o´, ta co´
W (x)=
N

j=1
(x − x
j
);
W
i
(x)=
N

j=1,j=i
(x −x
j
),i=1, 2, ··· ,N.

khi d¯o´, d¯oa
.
n khai triˆe

n Taylor
T

1
W
i
(x)

0
(x=x
i
)
=
1
W
i
(x
i
)
=
1
N

j=1,j=i
(x
i

− x
j
)
,i=1, 2, ··· ,N.
Vˆa
.
y, ta co´
H(x)=
N

i=1
a
0i
N

j=1,j=i
x − x
j
x
i
− x
j
≡ L(x).
Vˆa
.
y, v´o
.
i k = 0, thı` d¯a th´u
.
cnˆo

.
i suy Hermite chı´nh la` d¯a th´u
.
cnˆo
.
i suy Lagrange.
Trong tru
.
`o
.
ng ho
.
.
ptˆo

ng qua´t, viˆe
.
cbiˆe

udiˆe
˜
nd¯ath´u
.
c Hermite kha´ ph´u
.
cta
.
p. Du
.
´o

.
i
d¯ˆay la` mˆo
.
tva`i tru
.
`o
.
ng ho
.
.
p riˆeng d¯o
.
n gia

n kha´c cu

a d¯a th´u
.
cnˆo
.
i suy Hermite, khi
hˆe
.
d¯ i ˆe
`
ukiˆe
.
nchı


ch´u
.
ad¯a
.
o ha`m bˆa
.
c nhˆa
´
t.
Nhˆa
.
n xe´t 1.4.
Nˆe
´
u p
i
= 2, v´o
.
imo
.
i i =1, 2, ···,n, thı` khi d¯o´ k = 0 ho˘a
.
c k =1.
+V´o
.
i k = 0, ta co´
T

1
W

i
(x)

(p
i
−1−k)
(x=x
i
)
= T

1
W
i
(x)

(1)
(x=x
i
)
=
1

l=0

1
W
i
(x)


(l)
(x=x
i
)
(x − x
i
)
l
l!
=
1
W
i
(x
i
)

W

i
(x
i
)
W
2
i
(x
i
)
(x −x

i
)
=
1
W
i
(x
i
)

1 −
W

i
(x
i
)
W
i
(x
i
)
(x − x
i
)

, v´o
.
i i =1, 2, ··· ,n.
+V´o

.
i k = 1, ta co´
T

1
W
i
(x)

(p
i
−1−k)
(x=x
i
)
= T

1
W
i
(x)

(0)
(x=x
i
)
=
0

l=0


1
W
i
(x)

(l)
(x=x
i
)
(x −x
i
)
l
l!
=
1
W
i
(x
i
)

W

i
(x
i
)
W

2
i
(x
i
)
(x − x
i
)=
1
W
i
(x
i
)
.
11
Khi d¯o´, ta co´
H(x)=
n

i=1
1

k=0
a
ki
(x − x
i
)
k

k!
W
i
(x)T

1
W
i
(x)

(p
i
−1−k)
(x=x
i
)
=
n

i=1

a
0i
W
i
(x)T

1
W
i

(x)

(1)
(x=x
i
)
+a
1i
(x − x
i
)W
i
(x)T

1
W
i
(x)

(0)
(x=x
i
)

=
n

i=1
W
i

(x)

a
0i
1
W
i
(x
i
)

1 −
W

i
(x
i
)
W
i
(x
i
)
(x −x
i
)

+a
1i
(x − x

i
)
1
W
i
(x
i
)

=
n

i=1
W
i
(x)
W
i
(x
i
)

a
0i

1 −
W

i
(x

i
)
W
i
(x
i
)
(x − x
i
)

+a
1i
(x − x
i
)

=
n

i=1
W
i
(x)
W
i
(x
i
)


a
0i


a
0i
W

i
(x
i
)
W
i
(x
i
)
− a
1i

(x −x
i
)

.
Ngoa`i ra, trong phˆa
`
n ba`i toa´n nˆo
.
i suy Lagrange, ta d¯a

˜
biˆe
´
tr˘a
`
ng
L
i
(x)=
n

j=1,j=i
x − x
j
x
i
− x
j
; i =1, 2, ··· ,n
va`
L
i
(x
j
)=



1, khi i = j
0, khi i = j.

Do d¯o´
L
i
(x
i
) ≡ 1, ∀i = 1,n.
Vˆa
.
y
W
i
(x)
W
i
(x
i
)
=
n

j=1,j=i
(x − x
j
)
2
(x
i
− x
j
)

2
= L
2
i
(x); i = 1,n.
D
-
a
.
o ha`m theo x hai vˆe
´
cu

ad¯˘a

ng th ´u
.
c trˆen, ta d¯u
.
o
.
.
c
W

i
(x)
W
i
(x

i
)
=2L
i
(x)L

i
(x)=2L

i
(x
i
).
Do d¯o´, d¯a th´u
.
cnˆo
.
i suy Hermite trong tru
.
`o
.
ng ho
.
.
p na`y co´ da
.
ng
H(x)=
n


i=1
L
2
i
(x)

a
0i


2a
0i
L

i
(x
i
) −a
1i

(x − x
i
)

.
Du
.
´o
.
i d¯ˆay la` mˆo

.
tva`i minh ho
.
a cho viˆe
.
cvˆa
.
ndu
.
ng ca´c cˆong th´u
.
cnˆo
.
i suy (do ta´c
gia

sa´ng ta´c)
12
Ba`i toa´n 1.1. Cho d¯a th´u
.
c P (x) bˆa
.
c 4, tho

ama
˜
nca´c d¯iˆe
`
ukiˆe
.

n sau:
P (−1)=3a +1(a>0) ; P

(0) = 0;
P

(1) = 4(3 + a); P
(3)
(−2) = −48;
P
(4)
(2008) = 24.
Ch´u
.
ng minh r˘a
`
ng:
Q(x)=P ( x)+P

(x)+P

(x)+P
(3)
(x)+P
(4)
(x) > 0. ∀x ∈ R.
Gia

i.
´

Ap du
.
ng cˆong th´u
.
cnˆo
.
i suy Taylor (v´o
.
i N = 3), ta tı`m d¯u
.
o
.
.
c
P (x)=x
4
+2ax
2
+ a (a>0)
Suy ra:
P

(x)=4x
3
+4ax ;
P

(x)=12x
2
+4a ;

P
(3)
(x)=24x ;
P
(4)
(x)=24 .
Do d¯o´:
Q(x)=(x
2
+2x)
2
+2a(x +1)
2
+3a +8(x
2
+3x +3)> 0, ∀x ∈ R
Ba`i toa´n 1.2. Cho d¯a th´u
.
c P (x) bˆa
.
c n, tho

ama
˜
n:
P (2007) < 0; −P

(2007) ≤ 0,P

(2007) ≤ 0, ···, (−1)

n
P
(n)
≤ 0;
P (2008) > 0,P

(2008) ≥ 0,P

(2008) ≥ 0, ···,P
(n)
(2008) ≥ 0.
Ch´u
.
ng minh r˘a
`
ng ca´c nghiˆe
.
m thu
.
.
ccu

a P (x) thuˆo
.
c (2007; 2008).
Gia

i.
´
Ap du

.
ng cˆong th´u
.
cnˆo
.
i suy Taylor, ta co´:
P (x)=P ( b)+
P

(b)
1!
(x − b)+
P

(b)
2!
(x − b)
2
+ ···+
P
(n)
(b)
n!
(x − b)
n
, v´o
.
i b = 2008.
Do d¯o´, Nˆe
´

u x ≥ b thı` P(x) khˆong co´ nghiˆe
.
m x ≥ b.
V´o
.
i a = 2007, a´p du
.
ng cˆong th´u
.
cnˆo
.
i suy Taylor, ta co´
P (x)=P (a)+
−P

(a)
1!
(a −x)+
P

(a)
2!
(a −x)
2
+ ···+
(−1)
n
P
(n)
(a)

n!
(a − x)
n
.
Do d¯o´, nˆe
´
u x<athı` P(x) khˆong co´ nghiˆe
.
m x ≤ a.
Vˆa
.
y ca´c nghiˆe
.
m pha

i thuˆo
.
c (2007; 2008).
13
Chu
.
o
.
ng 2
Mˆo
.
tsˆo
´
´u
.

ng du
.
ng cu
˙’
a cˆong th´u
.
c
nˆo
.
i suy
Chu
.
o
.
ng na`y trı`nh ba`y mˆo
.
tsˆo
´
´u
.
ng du
.
ng cu

a ca´c cˆong th´u
.
cnˆo
.
i suy, trong d¯o´d¯ˆe
`

cˆa
.
p sˆau ho
.
nd¯ˆo
´
iv´o
.
i cˆong th´u
.
cnˆo
.
i suy Lagrange, cˆong th´u
.
c co´ nhiˆe
`
u´u
.
ng du
.
ng d¯ˆe

gia

imˆo
.
tsˆo
´
ba`i toa´n kho´ o
.


hˆe
.
phˆo

thˆong chuyˆen toa´n.
Vˆa
´
nd¯ˆe
`
´u
.
ng du
.
ng cˆong th´u
.
cnˆo
.
i suy trong u
.
´o
.
clu
.
o
.
.
ng va`xˆa
´
pxı


ha`m sˆo
´
la` hai
nˆo
.
i dung quan tro
.
ng va`tu
.
o
.
ng d¯ˆo
´
i kho´, v´o
.
inh˜u
.
ng ky
˜
thuˆa
.
tch´u
.
ng minh kha´ ph´u
.
c
ta
.
p, d¯u

.
o
.
.
c trı`nh ba`y o
.

chu
.
o
.
ng sau.
2.1 Mˆo
.
tsˆo
´
´u
.
ng du
.
ng cu
˙’
a cˆong th ´u
.
cnˆo
.
i suy La-
grange
2.1.1 Cˆong th´u
.

cnˆo
.
i suy Lagrange
D
-
i
.
nh nghı
˜
a 2.1. Cho n sˆo
´
x
1
,x
2
, ··· ,x
n
phˆan biˆe
.
tva`n sˆo
´
a
1
,a
2
, ···,a
n
tu`y y´.
Thˆe
´

thı` tˆo
`
nta
.
i duy nhˆa
´
tmˆo
.
td¯ath´u
.
c P (x) v´o
.
ibˆa
.
c khˆong vu
.
o
.
.
t qua´ n−1, tho

ama
˜
n
P (x
j
)=a
j
; ∀j =1, 2, ···,n. (2.1)
D

-
ath´u
.
cco´da
.
ng
n

j=1
a
j
n

i=1,ı=j
x − x
i
x
j
− x
i
(2.2)
D
-
ath´u
.
c (2.2) d¯u
.
o
.
.

cgo
.
i la` d¯a th´u
.
cnˆo
.
i suy Lagrange ho˘a
.
c cˆong th´u
.
cnˆo
.
i suy
Lagrange. Ca´c sˆo
´
x
1
,x
2
, ···,x
n
d¯ u
.
o
.
.
cgo
.
ila`ca´c nu´t nˆo
.

i suy.
14
+V´o
.
i n = 2, d¯a th´u
.
cd¯o´la`
P (x)=a
1
x − x
2
x
1
− x
2
+ a
2
x − x
1
x
2
− x
1
. (2.3)
Ky´ hiˆe
.
u degP (x) la` bˆa
.
ccu


a P(x). Thˆe
´
thı`
degP (x) ≤ 1va` P (x
1
)=a
1
; P (x
2
)=a
2
.
+V´o
.
i n = 3, d¯a th´u
.
cd¯o´la`
P (x)=a
1
(x − x
2
)(x − x
3
)
(x
1
− x
2
)(x
1

− x
3
)
+ a
2
(x − x
3
)(x − x
1
)
(x
2
− x
3
)(x
2
− x
1
)
+ a
3
(x − x
1
)(x − x
2
)
(x
3
− x
1

)(x
3
− x
2
)
. (2.4)
Ro
˜
ra`ng degP (x) ≤ 2va` P(x
1
)=a
1
,P(x
2
)=a
2
),P(x
3
)=a
3
.
()T`u
.
cˆong th´u
.
cnˆo
.
i suy Lagrange, ta co´
D
-

i
.
nh nghı
˜
a 2.2. Cho n sˆo
´
x
1
,x
2
, ···,x
n
phˆan biˆe
.
t. Thˆe
´
thı` mo
.
id¯ath´u
.
c P (x) v´o
.
i
bˆa
.
c khˆong vu
.
o
.
.

t qua´ n − 1 d¯ ˆe
`
uco´thˆeviˆe
´
tdu
.
´o
.
ida
.
ng
P (x)=
n

j=1
P (x
j
)
n

i=1,i=j
x − x
i
x
j
− x
i
. (2.5)
Nhˆa
.

n xe´t 2.1. (
´
Y nghı
˜
a hı`nh ho
.
c)
D
-
ath´u
.
c (2.3) va` (2.4) kha´ quen thuˆo
.
c trong chu
.
o
.
ng trı`nh toa´n phˆo

thˆong. Ta
thu
.

d¯i tı`m y´ nghı
˜
a hı`nh ho
.
ccu

a chu´ng, ch˘a


ng ha
.
n (2.4).
Gia

su
.

r˘a
`
ng, trˆen m˘a
.
t ph˘a

ng to
.
ad¯ˆo
.
Oxy cho 3 d¯iˆe

m A(x
1
; y
1
),B(x
2
; y
2
),C(x

2
; y
2
),
v´o
.
i x
1
,x
2
.x
3
kha´c nhau t`u
.
ng d¯ˆoi mˆo
.
t.
Thˆe
´
thı`, theo (2.1) va` (2.2) tˆo
`
nta
.
i duy nhˆa
´
tmˆo
.
td¯u
.
`o

.
ng cong y = P (x), trong
d¯ o´ la` d¯a th´u
.
cv´o
.
i degP (x) ≤ 2, tho

ama
˜
n
P (x
1
)=y
1
(nghı
˜
a la` d¯u
.
`o
.
ng cong qua d¯iˆe

m A);
P (x
2
)=y
2
(nghı
˜

a la` d¯u
.
`o
.
ng cong qua d¯iˆe

m B);
P (x
3
)=y
3
(nghı
˜
a la` d¯u
.
`o
.
ng cong qua d¯iˆe

mC).
Ho
.
nn˜u
.
a, d¯u
.
`o
.
ng cong co`n co´ phu
.

o
.
ng trı`nh cu
.
thˆe

la` y = P (x), tro`n d¯o´ P(x)co´
da
.
ng (2.4) va`ca´chˆe
.
sˆo
´
a
j
chı´nh la` y
j
,j=1, 2, 3.
+V´o
.
i degP (x)=2,d¯ˆo
`
thi
.
y = P (x) la` parabol d¯i qua 3 d¯iˆe

m A, B, C.
+V´o
.
i degP (x) = 1, d¯ˆo

`
thi
.
y = P (x) la` d¯u
.
`o
.
ng th˘a

ng d¯i qua 3 d¯iˆe

m A, B, C,
khˆong cu`ng phu
.
o
.
ng v´o
.
i tru
.
c hoa`nh.
15
+V´o
.
i degP (x) = 0, d¯ˆo
`
thi
.
y = P (x) la` d¯u
.

`o
.
ng th˘a

ng d¯i qua 3 d¯iˆe

m A, B, C,
cu`ng phu
.
o
.
ng v´o
.
i tru
.
c hoa`nh.
V´o
.
i ca´c minh ho
.
a trˆen ta thˆa
´
yr˘a
`
ng, cˆong th´u
.
cnˆo
.
i suy Lagrange chı´nh la` ”ca´c
gˆo

´
c” cu

amˆo
.
tsˆo
´
phu
.
o
.
ng trı`nh d¯u
.
`o
.
ng cong (ho˘a
.
cd¯u
.
`o
.
ng th˘a

ng) d¯i qua ca´c d¯iˆe

m
cho tru
.
´o
.

c trong m˘a
.
t ph˘a

ng to
.
ad¯ˆo
.
.
D
-
o´ la` ”ca´i gˆo
´
c” nhı`n du
.
´o
.
i go´c d¯ˆo
.
hı`nh ho
.
c.
Du
.
´o
.
i d¯ˆay, v´o
.
imˆo
.

t go´c nhı`n kha´c, cˆong th´u
.
cnˆo
.
i suy Lagrange co`n la` ”ca´i gˆo
´
c” cu

a
hˆa
`
uhˆe
´
t ca´c d¯ˆo
`
ng nhˆa
´
tth´u
.
cda
.
ng phˆan th´u
.
c.
Nhˆa
.
n xe´t 2.2.
V´o
.
i d¯a th´u

.
c P (x)co´ degP (x) ≤ n −1 cho tru
.
´o
.
c, ca´c sˆo
´
a
j
trong (2.2) d¯u
.
o
.
.
c thay
bo
.

i P(x
j
), v´o
.
i j =1, 2, ···,n.
Bˆay gi`o
.
ta thu
.

d¯i tı`m mˆo
.

t´u
.
ng du
.
ng cu

a (2.5).
Gia

su
.

x
1
,x
2
, ···,x
n
la` n sˆo
´
thu
.
.
c phˆan biˆe
.
t, n ≥ 2. Xe´t d¯a th´u
.
c
P (x)=x
n


n

i=1
(x − x
i
). (2.6)
D
-
ath´u
.
c na`y d¯u
.
o
.
.
c khai triˆe

ndu
.
´o
.
ida
.
ng
P (x)=S
1
x
n−1
− S

2
x
n−2
+ S
3
x
n−3
−···+(−1)
n+1
S
n
, (2.7)
trong d¯o´
S
1
= x
1
+ x
2
+ ···+ x
n
;
S
2
= x
1
x
2
+ x
1

x
3
+ ···+ x
n−1
x
n
;
···
S
n
= x
1
x
2
···x
n
(2.8)
Bo
.

i (2.7), ta thˆa
´
yr˘a
`
ng degP (x) ≤ n − 1.
Ngoa`i ra, t`u
.
da
.
ng (2.6), ta co´

P (x
j
)=x
n
j
; ∀j ∈{1, 2, ···,n}.
T`u
.
d¯ o´,a´pdu
.
ng (2.5), ta co´
n

j=1
x
n
j
n

i=1,i=j
x − x
i
x
j
− x
i
(2.9)
16
Dˆe
˜

thˆa
´
yr˘a
`
ng vˆe
´
pha

icu

a (2.9) la` d¯a th´u
.
cco´hˆe
.
sˆo
´
d¯ ´u
.
ng tru
.
´o
.
c x
n−1
la`
n

j=1
x
n

j

n
i=1,i=j
(x
j
− x
i
)
. (2.10)
Bo
.

i (2.7), (2.8), (2.9), (2.10), ta co´
n

j=1
x
n
j

n
i=1,i=j
(x
j
− x
i
)
=
n


j=1
x
j
. (2.11)
D
-
˘a

ng th´u
.
c (2.11) la` mˆo
.
td¯˘a

ng th´u
.
c liˆen quan d¯ˆe
´
n phˆan th´u
.
c, thu
.
`o
.
ng g˘a
.
p trong
chu
.

o
.
ng trı`nh toa´n phˆo

thˆong.
Ta thu
.

minh ho
.
amˆo
.
tva`i tru
.
`o
.
ng ho
.
.
p riˆeng cu

a cˆong th´u
.
c (2.11).
+V´o
.
i n = 2, ta co´
x
2
1

x
1
− x
2
+
x
2
2
x
2
− x
1
= x
1
+ x
2
hay
x
2
1
− x
2
2
x
1
− x
2
= x
1
+ x

2
(2.12)
Ta thˆa
´
yr˘a
`
ng, d¯˘a

ng th´u
.
c (2.12) chı´nh la` mˆo
.
td¯˘a

ng th ´u
.
c quen thuˆo
.
c.
+V´o
.
i n = 3, ta co´
x
3
1
(x
1
−x
2
)(x

1
− x
3
)
+
x
3
2
(x
2
− x
3
)(x
2
− x
1
)
+
x
3
3
(x
3
− x
1
)(x
3
− x
2
)

= x
1
+x
2
+x
3
. (2.13)
T`u
.
d¯ ˘a

ng th ´u
.
c (2.13), co´ thˆe

sa´ng ta´c tha`nh mˆo
.
tsˆo
´
ba`i tˆa
.
p, ch˘a

ng ha
.
n
Vı´ du
.
2.1. Ch´u
.

ng minh r˘a
`
ng v´o
.
i3sˆo
´
nguyˆen bˆa
´
t ky` kha´c nhau t`u
.
ng d¯ˆoi mˆo
.
t, sˆo
´
sau d¯ˆay cu
˜
ng la` mˆo
.
tsˆo
´
nguyˆen:
a
3
(a − b)(a − c)
+
b
3
(b − c)(b − a)
+
c

3
(c − a)(c − b)
.
Vı´ du
.
2.2. Phˆan tı´ch d¯a th´u
.
c sau tha`nh nhˆan tu
.

:
x
3
y + y
3
z + z
3
x − x
3
z −y
3
x − z
3
y.
Theo hu
.
´o
.
ng trˆen, co´ thˆe


sa´ng ta´c d¯u
.
o
.
.
c kha´ nhiˆe
`
u ba`i tˆa
.
p phong phu´. Ngoa`i
ra, ta co`n co´ thˆe

so sa´nh S
2
,S
3
, , S
n
o
.

hai vˆe
´
cu

a (2.5) d¯ˆe

tı`m thˆem nh˜u
.
ng d¯˘a


ng
th ´u
.
c kha´c. Sˆo
´
d¯ ˘a

ng th ´u
.
c tı`m d¯u
.
o
.
.
cse
˜
phong phu´ thˆem lˆen nˆe
´
u ta tiˆe
´
ptu
.
cxe´t
nh˜u
.
ng d¯a th´u
.
c kha´c, v´o
.

i degP (x)  n − 1.
17
Bˆay gi`o
.
, ta tiˆe
´
ptu
.
c tı`m kiˆe
´
m thˆem ca´c d¯˘a

ng th ´u
.
c theo mˆo
.
thu
.
´o
.
ng kha´c.
V´o
.
i n sˆo
´
phˆan biˆe
.
t x
1
,x

2
, , x
n
, xe´t d¯a th´u
.
c:
ω(x)=
n

i=1
(x − x
i
).
Ro
˜
ra`ng degω(x)=n.
Thˆe
´
thı`
ω

(x)=
n

j=1
n

i=1,i=j
(x −x
i

),
v´o
.
i degω

(x)=n − 1.
V´o
.
imˆo
˜
i j ∈{1, 2, , n}, ta co´
ω

(x
j
)=
n

i=1,i=j
(x
j
−x
i
).
Bˆay gi`o
.
,v´o
.
imˆo
˜

i j ∈{1, 2, , n}, ta xe´t ha`m
ω
j
(x)=
ω(x)
(x − x
j


(x
j
)
=
n

i=1,i=j
x − x
i
x
j
− x
i
. (2.14)
Nhˆa
.
n xe´t r˘a
`
ng, v´o
.
imˆo

˜
i j ∈{1, 2, , n}, (2.10) la` mˆo
.
t d¯a th´u
.
cva` degω
j
(x)=
n − 1. D
-
ath´u
.
c na`y co´ tı´nh chˆa
´
t
ω
j
(x
k
)=0,v´o
.
i k = j;
ω
j
(x
k
)=1,v´o
.
i k = j.
Bˆay gi`o

.
,nˆe
´
u d¯a th´u
.
c P (x)=a
n
x
n
+ a
n−1
x
n−1
+ + a
1
x + a
0
, a
n
= 0, co´ n
nghiˆe
.
m thu
.
.
c phˆan biˆe
.
t x
1
,x

2
, , x
n
, thı` P (x)=a
n
ω(x).
Do d¯o´, v´o
.
imˆo
˜
i j ∈{1, 2, , n}, ta co´
P

(x
j
)=a
n
ω

(x
j
)
hay
ω

(x
j
)=
P


(x
j
)
a
n
.
Vˆa
.
y, v´o
.
imˆo
˜
i j ∈{1, 2, , n}, (2.10) co`n viˆe
´
td¯u
.
o
.
.
cdu
.
´o
.
ida
.
ng
ω
j
(x)=
a

n
ω(x)
(x − x
j
)P

(x
j
)
=
n

i=1,i=j
x − x
i
x
j
− x
i
. (2.15)
Bˆay gi`o
.
, ta ha
˜
y tı`m mˆo
.
t´u
.
ng du
.

ng cu

a (2.15) d¯ˆe

ta
.
oranh˜u
.
ng d¯˘a

ng th´u
.
cm´o
.
i.
Tro
.

la
.
iv´o
.
id¯ath´u
.
c P(x)=a
n
x
n
+ a
n−1

x
n−1
+ + a
1
x + a
0
, a
n
=0,n ≥ 2, co´
18
n nghiˆe
.
m thu
.
.
c phˆan biˆe
.
t x
1
,x
2
, , x
n
.
V´o
.
i n gia´ tri
.
phˆan biˆe
.

t x
1
,x
2
, , x
n
,a´pdu
.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange d¯ˆo
´
i
v´o
.
i d¯a th´u
.
c f(x)=x
k
, k  n − 1, ta co´
x
k
=
n

j=1
x
k

j
ω
j
(x)
Bo
.

i (2.15), ta co´
x
k
=
n

j=1
x
k
j
ω(x)
(x − x
j


(x
j
)
= a
n
n

j=1

x
k
j

n
i=1,i=j
(x − x
i
)
P

(x
j
)
.
Biˆe

uth´u
.
c cuˆo
´
i cu`ng la` mˆo
.
t d¯a th´u
.
cco´hˆe
.
sˆo
´
cu


a x
n−1
la`
a
n
n

j=1
x
k
j
P

(x
j
)
.
So sa´nh ca´c hˆe
.
sˆo
´
cu

ad¯ath´u
.
c x
k
, ta d¯u
.

o
.
.
c ca´c d¯˘a

ng th´u
.
c sau:
n

j=1
x
k
j
P

(x
j
)
=0, ∀k ∈{0, 1, 2, , n − 2}; (2.16)
n

j=1
x
k
j
P

(x
j

)
=
1
a
n
, v´o
.
i k = n − 1. (2.17)
2.1.2 Mˆo
.
tsˆo
´
´u
.
ng du
.
ng
Phˆa
`
n tro
.
ng tˆam cu

a phˆa
`
n na`y tˆa
.
p trung va`o viˆe
.
ca´pdu

.
ng mˆo
.
t ca´ch kha´ linh
hoa
.
t cˆong th´u
.
cnˆo
.
i suy Lagrange d¯ˆe

gia

imˆo
.
tsˆo
´
ba`i toa´n kho´, trong d¯o´ co´ ca´c d¯ˆe
`
thi cho
.
nho
.
c sinh gio

i trong nu
.
´o
.

c, khu vu
.
.
cva` quˆo
´
ctˆe
´
.
Ba`i toa´n 2.1. Xa´c d¯i
.
nh d¯a th´u
.
cbˆa
.
c hai nhˆa
.
n gia´ tri
.
b˘a
`
ng 3; 1; 7,ta
.
i x b˘a
`
ng −1;
0; 3 tu
.
o
.
ng ´u

.
ng.
Gia

i. Ta co´ x
1
= −1,x
2
=0,x
3
=3va` f(x
1
)=3,f(x
2
)=1,f(x
3
)=7.
´
Ap du
.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange v´o
.
i n = 3, ta co´:
f(x)=f(−1)
(x − 0)(x − 3)
(−1 − 0)(−1 − 3)

+ f(0)
(x − 3)(x +1)
(0 − 3)(0 + 1)
+f(3)
(x + 1)(x − 0)
(3 + 1)(3 −0)
= x
2
−x +1.
19
Ba`i toa´ n 2.2. Cho a
1
,a
2
, , a
n
la` n sˆo
´
kha´c nhau. Ch ´u
.
ng minh r˘a
`
ng nˆe
´
u d¯a th´u
.
c
f(x) co´bˆa
.
c khˆong l´o

.
nho
.
n n − 2, thı`:
T =
f(a
1
)
(a
1
− a
2
)(a
1
− a
3
) (a
1
− a
n
)
+ +
f(a
n
)
(a
n
− a
1
)(a

n
− a
2
) (a
n
− a
n−1
)
=0.
Gia

i. Theo cˆong th´u
.
cnˆo
.
i suy Lagrange thı`, mo
.
id¯ath´u
.
c f(x) co´ bˆa
.
c khˆong l´o
.
n
ho
.
n n − 1d¯ˆe
`
uviˆe
´

td¯u
.
o
.
.
cdu
.
´o
.
ida
.
ng:
f(x)=f(a
1
)
(x −a
2
)(x −a
3
) (x −a
n
)
(a
1
− a
2
)(a
1
− a
3

) (a
1
− a
n
)
+ f(a
2
)
(x − a
1
)(x − a
3
) (x −a
n
)
(a
2
− a
1
)(a
2
− a
3
) (a
2
− a
n
)
+ + f(a
n

)
(x −a
1
)(x − a
2
) (x − a
n
)
(a
n
− a
1
)(a
n
−a
2
) (a
n
− a
n−1
)
.
Hˆe
.
sˆo
´
cu

a x
n−1

o
.

vˆe
´
tra´i b˘a
`
ng 0, co`n hˆe
.
sˆo
´
cu

a x
n−1
o
.

vˆe
´
pha

i la`:
T =
f(a
1
)
(a
1
− a

2
)(a
1
− a
3
) (a
1
− a
n
)
+ +
f(a
n
)
(a
n
− a
1
)(a
n
− a
2
) (a
n
− a
n−1
)
.
Suy ra d¯iˆe
`

u pha

ich´u
.
ng minh.
Ba`i toa´ n 2.3. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u d¯a th´u
.
cbˆa
.
c hai nhˆa
.
n gia´ tri
.
nguyˆen ta
.
iba
gia´ tri
.
nguyˆen liˆen tiˆe
´
pcu

abiˆe
´

nsˆo
´
x, thı` d¯a th´u
.
c nhˆa
.
n gia´ tri
.
nguyˆen ta
.
imo
.
i x
nguyˆen.
Gia

i. Gia

su
.

f(k −1), f(k), f(k + 1) la` nh˜u
.
ng sˆo
´
nguyˆen v´o
.
i k nguyˆen.
´
Ap du

.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange cho d¯a th´u
.
cbˆa
.
c hai f(x)v´o
.
ibasˆo
´
nguyˆen
k −1, k, k + 1, ta co´
f(x)=f(k −1)
(x − k)(x −k −1)
2
+ f(k)
(x − k + 1)(x − k − 1)
−1
+f(k +1)
(x − k)(x − k +1)
2
.
D
-
˘a
.
t m = x − k, ta co´

f(x)=f(k −1)
(m(m −1)
2
+ f(k)(m
2
−1) + f(k +1)
m(m +1)
2
.
Vı` tı´ch hai sˆo
´
nguyˆen liˆen tiˆe
´
pchiahˆe
´
t cho 2, nˆen f(x) nguyˆen v´o
.
imo
.
i x
nguyˆen.
Ba`i toa´ n 2.4. Cho a
1
,a
2
, , a
n
la` n sˆo
´
kha´c nhau. Go

.
i A
i
(i =1,2, , n) la`
phˆa
`
ndu
.
trong phe´p chia d¯a th´u
.
c f(x) cho x −a
i
.Ha
˜
y tı`m phˆa
`
ndu
.
r(x) trong phe´p
chia f(x) cho (x − a
1
)(x − a
2
) (x −a
n
).
20
Gia

i. Go

.
i q(x) la` thu
.
o
.
ng va` r(x) la` phˆa
`
ndu
.
trong phe´p chia f(x)cho
(x − a
1
)(x −a
2
) (x −a
n
)
Ta co´
f(x)=(x −a
1
)(x − a
2
) (x − a
n
).q(x)+r( x),
trong d¯o´ deg r(x) <n.
D
-
˘a
.

t x = a
i
(i =1, 2, , n)va`d¯ˆe

y´r˘a
`
ng A
i
= f(a
i
). Thˆe
´
thı`, ta co´ r(a
i
)=A
i
(i =1, 2, , n).
Nhu
.
vˆa
.
y,tabiˆe
´
td¯u
.
o
.
.
c ca´c gia´ tri
.

cu

a d¯a th ´u
.
c r(x) co´ bˆa
.
c nho

ho
.
n n ta
.
i n d¯ i ˆe

m
kha´c nhau a
1
,a
2
, , a
n
. Do d¯o´, a´p du
.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange, ta co´:
r(x)=A
1

(x −a
2
)(x − a
3
) (x −a
n
)
(a
1
− a
2
)(a
1
− a
3
) (a
1
− a
n
)
+ A
2
(x − a
1
)(x −a
3
) (x −a
n
)
(a

2
− a
1
)(a
2
− a
3
) (a
2
−a
n
)
+ + A
n
(x −a
1
)(x −a
2
) (x −a
n−1
)
(a
n
− a
1
)(a
n
− a
2
) (a

n
− a
n−1
)
=
n

i=1
A
i

j=1,j=i
x −a
j
a
i
−a
j
.
Ba`i toa´n 2.5. (Vˆo d¯i
.
ch Chˆau
´
A Tha´i Bı`nh Du
.
o
.
ng, 2001)
Trong m˘a
.

t ph˘a

ng v´o
.
ihˆe
.
tru
.
cto
.
ad¯ˆo
.
vuˆong go´c, mˆo
.
td¯iˆe

md¯u
.
o
.
.
cgo
.
i la` d¯iˆe

m
hˆo
˜
nho
.

.
pnˆe
´
umˆo
.
t trong hai tha`nh phˆa
`
nto
.
ad¯ˆo
.
cu

ad¯iˆe

md¯o´ la` sˆo
´
h˜u
.
utı

, tha`nh
phˆa
`
n kia la` sˆo
´
vˆo tı

. Tı`m tˆa
´

tca

ca´c d¯a th´u
.
cco´hˆe
.
sˆo
´
thu
.
.
c sao cho d¯ˆo
`
thi
.
cu

amˆo
˜
i
d¯a th´u
.
cd¯o´ khˆong ch´u
.
abˆa
´
t ky` d¯iˆe

mhˆo
˜

nho
.
.
p na`o ca

.
Gia

i. Ca´c d¯a th´u
.
ccˆa
`
n tı`m la` ca´c d¯a th´u
.
cbˆa
.
c1v´o
.
ihˆe
.
sˆo
´
h˜u
.
utı

.
Thˆa
.
tvˆa

.
y, t`u
.
cˆong th´u
.
c nˆoi
.
suy Lagrange, ta co´ kˆe
´
t qua

sau d¯ˆay: Nˆe
´
u d¯a th´u
.
c f(x)
tho

ama
˜
nd¯iˆe
`
ukiˆe
.
n f(r) ∈ Q v´o
.
imo
.
i r ∈ Q thı` tˆa
´

tca

ca´c hˆe
.
sˆo
´
cu

a f(x)d¯ˆe
`
ula`
sˆo
´
h˜u
.
utı

.
Vı` vˆa
.
y, nˆe
´
u d¯a thu´c co´ mˆo
.
thˆe
.
sˆo
´
vˆo tı


thı` se
˜
tˆo
`
nta
.
i r ∈ Q d¯ ˆe

f(r) vˆo tı

.Nhu
.
thˆe
´
,d¯ˆo
`
thi
.
cu

a d¯a th´u
.
c na`y pha

ich´u
.
a ı´t nhˆa
´
tmˆo
.

td¯iˆe

mhˆo
˜
nho
.
.
p.
Dˆe
˜
da`ng thˆa
´
yr˘a
`
ng ca´c d¯a th´u
.
cbˆa
.
c 0 (khi d¯o´, no´ d¯u
.
o
.
.
cbiˆe

udiˆe
˜
nb˘a
`
ng d¯u

.
`o
.
ng
th˘a

ng song song v´o
.
i tru
.
c hoa`nh) d¯ˆe
`
uco´ch´u
.
anh˜u
.
ng d¯iˆe

mhˆo
˜
nho
.
.
p.
Cu
˜
ng dˆe
˜
thˆa
´

yr˘a
`
ng ca´c d¯a th´u
.
cbˆa
.
c1v´o
.
ihˆe
.
sˆo
´
h˜u
.
utı

(khi d¯o´, no´ d¯u
.
o
.
.
cbiˆe

u
diˆe
˜
nb˘a
`
ng mˆo
.

td¯u
.
`o
.
ng th˘a

ng co´ hˆe
.
sˆo
´
go´c la` sˆo
´
h˜u
.
utı

) thı` khˆong ch´u
.
abˆa
´
t ky` d¯iˆe

m
hˆo
˜
nho
.
.
p na`o.
Tiˆe

´
p theo, xe´t d¯a th´u
.
c co´ bˆa
.
c n ≥ 2co´hˆe
.
sˆo
´
a
i
∈ Q
f(x)=a
0
+ a
1
x + a
2
x
2
+ + a
n
x
n
.
21
Khˆong mˆa
´
t tı´nh tˆo


ng qua´t, co´ thˆe

gia

su
.

r˘a
`
ng f(x) co´ ca´c hˆe
.
sˆo
´
nguyˆen, bo
.

i
vı` hai tˆa
.
pho
.
.
p nghiˆe
.
mcu

a hai phu
.
o
.

ng trı`nh f(x)=r va` af(x)=ar tru`ng nhau,
v´o
.
i a la` sˆo
´
nguyˆen (r la` sˆo
´
h˜u
.
utı

). Ho
.
nn˜u
.
a, nˆe
´
u ta kı´ hiˆe
.
u
g(x)=a
n−1
n
f

x
a
n

thı` g(x) la` d¯a th´u

.
cv´o
.
ica´chˆe
.
sˆo
´
nguyˆen, trong d¯o´hˆe
.
sˆo
´
d¯ ˆa
`
u tiˆen cu

a no´ b˘a
`
ng 1.
Phu
.
o
.
ng trı`nh f(x)=r co´ mˆo
.
t nghiˆe
.
m vˆo tı

nˆe
´

uva`chı

nˆe
´
uphu
.
o
.
ng trı`nh
g(x)=a
n−1
n
r co´ mˆo
.
t nghiˆe
.
mvˆotı

,cu
˜
ng thˆe
´
,nˆe
´
uva`chı

nˆe
´
uphu
.

o
.
ng trı`nh
f(x) −f(0) = r −f(0)
co´ mˆo
.
t nghiˆe
.
mvˆotı

.
To´mla
.
i la`, khˆong mˆa
´
t tı´nh tˆo

ng qua´t, ta co´ thˆe

gia

su
.

r˘a
`
ng f(x) co´ ca´c hˆe
.
sˆo
´

nguyˆen, v´o
.
i a
n
=1,a
0
=0.
Bˆay gi`o
.
,go
.
i r la` sˆo
´
nguyˆen tˆo
´
d¯ u

l´o
.
nd¯ˆe

cho
r>max {f(1),x
1
,x
2
, , x
k
},
v´o

.
i {x
1
,x
2
, , x
k
} la` tˆa
.
ptˆa
´
tca

ca´c nghiˆe
.
m thu
.
.
ccu

aphu
.
o
.
ng trı`nh f(x) −x =0.
Khi d¯o´ f(1) <r<f(r). Vı` thˆe
´
, theo d¯i
.
nh ly´ gia´ tri

.
trung gian, tˆo
`
nta
.
i ı´t nhˆa
´
t
mˆo
.
tsˆo
´
s ∈ (1,r) sao cho
f(s) − r =0.
Gia

su
.

s ∈ Q, ta viˆe
´
t s = p/q,v´o
.
i p, q la` hai sˆo
´
nguyˆen tˆo
´
cu`ng nhau. Thay
va`o d¯˘a


ng th ´u
.
c trˆen, dˆe
˜
da`ng suy ra q = 1, d¯iˆe
`
u na`y co´ nghı
˜
a s la` mˆo
.
tsˆo
´
nguyˆen.
T`u
.
d¯ ˆa
´
y suy ra r | s, vˆo ly´, vı` ta co´ s ∈ (1,r).
Mˆau thuˆa
˜
n na`y ch´u
.
ng to

r˘a
`
ng s la` sˆo
´
vˆo tı


, no´i ca´ch kha´c, d¯ˆo
`
thi
.
cu

a f(x)d¯i
qua mˆo
.
t ”d¯iˆe

mhˆo
˜
nho
.
.
p”.
Ba`i toa´n 2.6. Tı`m tˆa
´
tca

ca´cc˘a
.
pd¯ath´u
.
c P (x) va` Q(x) co´bˆa
.
cbav´o
.
ica´c hˆe

.
sˆo
´
thu
.
.
c tho

ama
˜
n4d¯iˆe
`
ukiˆe
.
n:
a) Ca

hai d¯a th´u
.
c nhˆa
.
n gia´ tri
.
0 ho˘a
.
c 1 ta
.
ica´c d¯iˆe

m x =1, 2, 3, 4;

b) Nˆe
´
u P(1) = 0 ho˘a
.
c P (2) = 1, thı` Q(1) = Q(3) = 1;
c) Nˆe
´
u P(2) = 0 ho˘a
.
c P (4) = 0, thı` Q(2) = Q(4) = 0;
d) Nˆe
´
u P (3) = 1 ho˘a
.
c P(4) = 1, thı` Q(1) = 0.
Gia

i. Gia

su
.

kı´ hiˆe
.
u a
k
= P (k), b
k
= Q(k), v´o
.

i k =1, 2, 3, 4, co`n P (x)va` Q(x)
la` ca´c d¯a th´u
.
c tho

ama
˜
nd¯ˆe
`
ba`i. Khi d¯o´, ca´c sˆo
´
co´ bˆo
´
nch˜u
.
sˆo
´
a
1
a
2
a
3
a
4
va` b
1
b
2
b

3
b
4
khˆong thˆe

b˘a
`
ng sˆo
´
na`o trong ca´c sˆo
´
0000, 0110, 1001, 1111, vı` ca´c d¯a th´u
.
c P ( x)
va` Q(x ) co´ bˆa
.
c 3. M˘a
.
t kha´c, sˆo
´
a
1
a
2
a
3
a
4
khˆong thˆe


co´ da
.
ng 0a
2
1a
4
,0a
2
a
3
1, a
1
11a
4
22
hay a
1
1a
3
1, vı` nˆe
´
u khˆong thı` t`u
.
ca´c d¯iˆe
`
ukiˆe
.
nb)va` d) ta co´ b
1
=1va` b

1
= 0, vˆo lı´.
T`u
.
d¯ o´, theo d¯iˆe
`
ukiˆe
.
n c) ta thˆa
´
yd¯iˆe
`
ukiˆe
.
n ba`i toa´n tho

ama
˜
nv´o
.
iva`chı

v´o
.
i
7c˘a
.
psˆo
´
(a

1
a
2
a
3
a
4
; b
1
b
2
b
3
b
4
) la` (0100;1010), (1000;0010), (1000;1000), (1000;1010),
(1010;0010), (1011;0010) va` (1100;1010).
´
Ap du
.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange, ta thay mˆo
˜
isˆo
´
c
1

c
2
c
3
c
4
tu
.
o
.
ng ´u
.
ng va`o
ca´c d¯a th´u
.
c R(x), tho

ama
˜
n ca´c d¯˘a

ng th ´u
.
c P(k)=c
1
,v´o
.
i k =1, 2, 3, 4.
Khi d¯o´ ta nhˆa
.

nd¯u
.
o
.
.
c6d¯ath´u
.
ctu
.
o
.
ng ´u
.
ng sau
R
1
(x)=(−1/2)x
3
+(7/2)x
2
− 7x +4;
R
2
(x) =(1 /2)x
3
−4x
2
+ (19/2)x −6;
R
3

(x)=(−1/6)x
3
+(3/2)x
2
− (13/3)x +4;
R
4
(x)=(−2/3)x
3
+5x
2
− (34/3)x +8;
R
5
(x)=(−1/2)x
3
+4x
2
− (19/2)x +7;
R
6
(x) =(1 /3)x
3
−(5/2)x
2
+ (31/6)x − 2.
Nhu
.
vˆa
.

y, c˘a
.
p d¯a th´u
.
c(P (x); Q(x)) tru`ng v´o
.
imˆo
.
t trong ca´c c˘a
.
p(R
2
(x); R
4
(x)),
(R
3
(x); R
1
(x)), (R
3
(x); R
3
(x)), (R
3
(x); R
4
(x)), (R
1
(x); R

1
(x)), (R
5
(x); R
1
(x)), (R
6
(x); R
4
(x)).
Ba`i toa´n 2.7. (Vˆo d¯i
.
ch My
˜
- 1975)
D
-
ath´u
.
c P (x) bˆa
.
c n tho

ama
˜
nca´c d¯˘a

ng th´u
.
c P (k)=

1
C
k
n+1
,v´o
.
i k =0, 1, 2, , n.
Tı´nh P ( n +1).
Gia

i. V´o
.
i1 i  n,a´pdu
.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange, ta co´
P (x)=
n

k=0
1
C
k
n+1

i=k
x − i

k − i
=
n

k=0

i=k
(x − i)
C
k
n+1
(−1)
n−k
(n − k)!k!
=
n

k=0
(−1)
n−k
n +1− k
(n + 1)!

i=k
(x −i).
Suy ra
P (n +1)=
n

k=0

(−1)
n−k
n +1− k
(n + 1)!

i=k
(n +1− i)=
n

k=0
(−1)
n−k
.
Do d¯o´ P (n +1)=0nˆe
´
u n le

va` P ( n +1)=1nˆe
´
u n ch˘a
˜
n.
Ba`i toa´n 2.8. Gia

su
.

d¯a th ´u
.
c c

0
+ c
1
x + c
2
x
2
+ + c
n
x
n
co´ gia´ tri
.
h˜u
.
utı

khi x
h˜u
.
utı

.Ch´u
.
ng minh r˘a
`
ng, tˆa
´
tca


ca´chˆe
.
sˆo
´
c
0
,c
1
,c
2
, , c
n
la` nh˜u
.
ng sˆo
´
h˜u
.
utı

.
23
Gia

i.
´
Ap du
.
ng cˆong th´u
.

cnˆo
.
i suy Lagrange v´o
.
i a
k
= k (k =0, 1, 2, , n), ta co´
f(x)=
(−1)
n
f(0)
n!
(x − 1)(x − 2) (x − n)+
(−1)
n−1
f(1)
1!(n − 1)!
x(x − 2) (x − n)
+
(−1)
n−2
f(2)
2!(n − 2)!
x(x − 1)(x − 3) (x − n).
Theo gia

thiˆe
´
t, f(0), f(1), , f(n) la` nh˜u
.

ng sˆo
´
h˜u
.
utı

. Vı` vˆa
.
y, khai triˆe

nvˆe
´
pha

i
cu

ad¯˘a

ng th´u
.
c trˆen, ta thˆa
´
yr˘a
`
ng ca´c hˆe
.
sˆo
´
cu


aca´clu
˜
yth`u
.
acu

a x d¯ ˆe
`
u la` nh ˜u
.
ng
sˆo
´
h˜u
.
utı

.D
-
ˆo
`
ng nhˆa
´
t d¯a th´u
.
co
.

hai vˆe

´
, suy ra ca´c sˆo
´
c
0
,c
1
,c
2
+ + c
n
,la`nh˜u
.
ng
sˆo
´
h˜u
.
utı

.
Lu
.
uy´:Cu
˜
ng co´ thˆe

a´p du
.
ng cˆong th´u

.
cnˆo
.
i suy Lagrange ta
.
i n +1d¯iˆe

m a
k
(k =0, 1, 2, , n)h˜u
.
utı

tu`y y´ va` kha´c nhau, thı` cu
˜
ng d¯i d¯ˆe
´
nkˆe
´
t qua

trˆen. Do d¯o´,
ta co´ kˆe
´
t qua

sau:
Nˆe
´
u d¯a th´u

.
cco´bˆa
.
c khˆong qua´ n va` co´ gia´ tri
.
h˜u
.
utı

ta
.
i n +1 d¯ i ˆe

mh˜u
.
utı

kha´c
nhau thı` ca´c hˆe
.
sˆo
´
cu

a d¯a th´u
.
ccu
˜
ng la` sˆo
´

h˜u
.
utı

.
Ba`i toa´ n 2.9. Cho p la` mˆo
.
tsˆo
´
nguyˆen tˆo
´
va` P (x) ∈ Z[x] la` d¯a th´u
.
cbˆa
.
c s tho

a
ma
˜
nca´c d¯iˆe
`
ukiˆe
.
n
1) P(0) = 0, P (1) = 1.
2) P(n) ho˘a
.
c chia hˆe
´

t cho p ho˘a
.
cco´sˆo
´
du
.
b˘a
`
ng 1,v´o
.
imo
.
i n ∈ Z
+
.
Ch´u
.
ng minh r˘a
`
ng: s ≥ p − 1.
Gia

i. Gia

su
.

ngu
.
o

.
.
cla
.
i, s  p −2. Khi d¯o´, theo cˆong th´u
.
cnˆo
.
i suy Lagrange, ta co´
P (x)=
p−2

k=0
P (k)
p−2

j=0;j=k
(x − j)
p−2

j=0;j=k
(k −j)
=
p−2

k=0
P (k)
p−2

j=0;j=k

(x − j)
k!(−1)
p−k
(p − k − 2)!
.
Cho x = p −1, ta thu d¯u
.
o
.
.
c
P (p − 1) =
p−2

k=0
P (k)
p−2

j=0;j=k
(p − 1 − j)
k!(−1)
p−k
(p − k − 2)!
=
p−2

k=0
P (k)(−1)
p−k
C

k
p−1
.
Theo gia

thiˆe
´
t thı` p nguyˆen tˆo
´
,nˆenC
k
p−1
≡ (−1)
k
(mod p). Do d¯o´
P (p − 1)=(−1)
p
p−2

k=0
P (k)(modp).
24
Nˆe
´
u p = 2, thı` 1 = P(1) = (−1)
2
P (0) (mod p), vˆo ly´.
Nˆe
´
u p ≥ 3, thı` p le


va` vı` vˆa
.
y
P (p − 1) = −
p−2

k=0
P (k)(modp).
T`u
.
d¯ˆay suy ra
s = P (0) + P (1) + + P (p − 2) + P (p − 1) = 0(modp).
M˘a
.
t kha´c, do gia

thiˆe
´
t 2) thı` s = k (mod p)v´o
.
i0 n  p − 1va` P (n)=1
(mod p)nˆen 1  s  p − 1, t´u
.
cla`s = 0 (mod p), mˆau thuˆa
˜
nv´o
.
ikˆe
´

t luˆa
.
n trˆen.
Vˆa
.
yd¯iˆe
`
u gia

thiˆe
´
t s  p − 2 la` sai. Ta co´ d¯iˆe
`
u pha

ich´u
.
ng minh.
Ba`i toa´ n 2.10. Tı`m tˆa
´
tca

ca´c d¯a th´u
.
c P (x) co´bˆa
.
c nho

ho
.

n n (n ≥ 2) va` thoa

ma
˜
nd¯iˆe
`
ukiˆe
.
n
n

k=0
(−1)
n−k−1
C
k
n
P (k)=0.
Gia

i.
´
Ap du
.
ng cˆong th´u
.
cnˆo
.
i suy Lagrange v´o
.

ica´cnu´t nˆo
.
i suy x
k
= k ta co´, mo
.
i
d¯a th´u
.
c P(x) co´ bˆa
.
c nho

ho
.
n n d¯ ˆe
`
u co´ da
.
ng
P (x)=
n−1

k=0
P (x
k
)
(x − x
0
) (x −x

k−1
)(x − x
k+1
) (x −x
n−1
)
(x
k
− x
0
) (x
k
− x
k−1
)(x
k
− x
k+1
) (x
k
− x
n−1
)
nˆen ta co´
P (x)=
n−1

k=0
P (x
k

)
(x −0) (x − (k −1))(x − (k + 1)) (x −(n − 1))
(k −0) (k − (k − 1))(k − ( k + 1)) ( k −(n − 1))
.
Do d¯o´
P (n)=
n−1

k=0
P (x
k
)
(n − 0) (n − k + 1)( n −k −1) 1
k!(−1)
n−k−1
(n −k −1)!
=
n−1

k=0
(−1)
n−k−1
.C
k
n
P (k)
Suy ra
n

k=0

(−1)
n−k−1
C
k
n
P (k)=0.
Vˆa
.
y ca´c d¯a th´u
.
ccˆa
`
n tı`m co´ da
.
ng
P (x)=
n−1

k=0
P (x
k
)
n−1

i=0,i=k
x − x
i
k −i
=
n−1


k=0
a
k
n−1

i=0,i=k
x − x
i
k −i
v´o
.
i a
k
∈ R.

×