Tải bản đầy đủ (.doc) (60 trang)

Thiet ke va xay dung mach dieu khien

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (859.81 KB, 60 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
Ninh Văn Trưởng
THIẾT KẾ VÀ XÂY DỰNG MẠCH ĐIỀU KHIỂN
VI KẸP CÓ GẮN CẢM BIẾN
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Điện tử -Viễn thông
Cán bộ hướng dẫn: TS. Chử Đức Trình
Cán bộ đồng hướng dẫn: CN. Phan Văn Minh
HÀ NỘI - 2008
Lời cảm ơn
Trước hết em xin bày tỏ lòng biết ơn sâu sắc tới TS. Chử Đức Trình, người thầy đã tận
tình giúp đỡ và những ý kiến đóng góp quý báu giúp em trong quá trình hoàn thiện khóa
luận. Em xin bày tỏ lòng biết ơn tới thầy cô trong khoa Điển tử-Viễn thông, cán bộ
giảng dạy phòng MEMS trường ĐH Công nghệ-ĐH Quốc Gia Hà Nội, CN. Phan Văn
Minh đã tạo điều kiện và trang bị cho em những kiến thức cần thiết để hoàn thành khóa
luận. Em cảm ơn gia đình và bạn bè đã động viên và giúp đỡ em trong quá trình thực
hiện công việc.
Với sự hiểu biết và kinh nghiệm làm việc còn non trẻ nên bản khóa luận này không thể
tránh khỏi những khiếm khuyết. Em rất mong nhận được sự đóng góp ý kiến nhiệt tình
từ thầy cô và bạn bè.
Một lần nữa, em xin chân thành cảm ơn.
Hà Nội ngày 28 tháng 5 năm 2008
Sinh viên
Ninh Văn Trưởng
Tóm tắt nội dung
Vào năm 2007, TS. Chử Đức Trình và nhóm nghiên cứu đã chế tạo ra thiết bị vi kẹp có
gắn cảm biến. Thiết bị này có chiều dài là 490 µm, chiều rộng là 350 µm, chiều dày là
30 µm với khoảng cách giữa hai miệng của vi kẹp là 40 µm. Vi kẹp có đặc điểm nổi bật
là điện áp ứng dụng tối đa khoảng 4.5 V, với actuator được thiết kế linh hoạt như mô
hình lược silicon. Thiết bị này phát huy tác dụng hiệu quả trong trường hợp thao tác kẹp


các vật cỡ µm. Việc thiết kế một mạch điều khiển cho vi kẹp này là rất quan trọng và
cần thiết. Do vậy khóa luận này trình bày vấn đề thiết kế và xây dựng mạch điều khiển
vi kẹp có gắn cảm biến.
Khóa luận gồm những nội dung chính sau: Chương 1 giới thiệu tổng quan về vi
kẹp có gắn cảm biến và bài toán điều khiển. Trong chương này sẽ giới thiệu về tác dụng
và những đặc tính kĩ thuật của vi kẹp. Tại sao phải thiết kế một thiết bị với những đặc
điểm như vậy? Và vấn đề điều khiển thiết bị này như thế nào? Những yêu cầu của quá
trình thiết kế. Chương 2 giới thiệu về họ vi điều khiển 16 bit MSP430x1xx. Chương này
đề cập đến những đặc điểm đặc trưng của họ vi điều khiển 16 bit này, các cổng vào/ ra
số, truyền nối tiếp không đồng bộ, các bộ biến đổi ADC, DAC 12 bit. Chương 3 chia
làm hai phần chính: Phần 1 trình bày về thiết kế phần cứng bo mạch điều khiển vi kẹp.
Trong phần này trình bày nguyên lý hoạt động và thiết kế của các khối khuếch đại tín
hiệu vi sai, khối điều khiển trung tâm, khối ghép nối máy tính, khối điều khiển vi kẹp.
Phần hai trình bày về công cụ lập trình và cách cấu hình hoạt động cho vi điều khiển
MSP430F167. Chương 4 kết luận và đưa ra hướng nghiên cứu trong thời gian tới.

Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Chương 1
Giới thiệu
1.1 Vi kẹp có gắn cảm biến
1.1.1 Giới thiệu
Gắn các bộ điều khiển lực vào các bộ chấp hành cho phép cải thiện tính khéo léo,
chính xác và tốc độ thao tác.Phần này giới thiệu sơ lược vi kẹp có gắn cảm biến dựa trên
bộ chấp hành điện-nhiệt polymer-silicon và một thanh cantilever cảm biến lực áp điện
trở. Vi kẹp có gắn cảm biến được đề xuất với chiều dài là 490 µm, chiều rộng 350 µm
và chiều dày là 30 µm với công suất tiêu thụ thấp và nhiệt độ hoạt động thấp. Hơn nữa,
thiết bị này được chế tạo với công nghệ tương thích CMOS và do đó có khả năng tích
hợp với các mạch điều khiển trên một chip.
1.1.2 Chế tạo
Vi kẹp có gắn cảm biến dựa trên sự trên kết hợp của vi chấp hành điện-nhiệt

polymer-silicon và thanh cảm biến lực áp trở cantilever. Sơ đồ nguyên lý được biểu diễn
trong hình 1.1. Khi cơ cấu chấp hành điện nhiệt được kích hoạt, cánh tay của vi kẹp và
thanh cảm biến cantilever bị uốn cong. Nó tạo ra một ứng xuất dọc theo chiều dài trên
hai cạnh đối diện của thanh cantilever làm thay đổi giá trị điện trở của cảm biến áp trở
trên thanh cantilever.
Khoảng cách giữa hai hàm vi kẹp được giám sát bởi thế ra của cầu Wheatstone.
Lực tiếp xúc giữa vi kẹp và vật được xác định dựa trên độ dịch chuyển và độ cứng của
cánh tay vi kẹp.
Hình 1.2 biểu diễn mặt cắt ngang và biểu diễn bề mặt chế tạo của cảm biến có gắn
vi kẹp.
1.1.3 Vi chấp hành điện nhiệt polymer-silicon
Cảm biến có gắn vi kẹp được thiết kế ở trạng thái thường mở. Cấu trúc của vi kẹp
dựa trên silicon kết hợp với polymer, mỗi bộ chấp hành bao gồm 41 răng lược silicon
với những lớp polymer SU8 ở giữa. Mỗi răng silicon có chiều rộng là 6 µm, chiều dài là
75 µm, và bề dày là 30 µm. Lớp polymer SU8 có chiều rộng là 3 µm.
Ninh Văn Trưởng – K49ĐB
1
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Hình 1.1: Hình vẽ nguyên lý của vi kẹp có gắn cảm biến
Hình 1.2: Biểu diễn mặt cắt ngang cánh tay của vi kẹp có gắn cảm biến với kí hiệu hình
học và các thông số. Biểu diễn cấu hình của cầu Wheatstone.
Ninh Văn Trưởng – K49ĐB
2
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
1.1.4 Thông số kỹ thuật của vi kẹp có gắn cảm biến
Hình 1.3 biểu diễn một vài trạng thái khác nhau của miệng vi kẹp. Hình 1.3(a) là
trạng thái không hoạt động của vi kẹp với độ mở là 40 µm. Khoảng cách giữa hai miệng
có thể được đóng tới 8 µm khi áp dụng một điện thế khoảng 4.5 V tới các cánh tay (hình
1.3 b). Trong hình 1.3 (c) và (d) minh họa cho thao tác kẹp dây kim loại 23 µm.
Hình 1.3: Hoạt động của thiết bị:(a) vị trí ban đầu miệng của vi kẹp có gắn cảm biến;

(b) khi có áp đặt một điện thế 4.5 V tới cả những cánh tay; (c) trước khi kẹp vật; (d) khi
kẹp vật ( dây kim loại ).
Ninh Văn Trưởng – K49ĐB
3
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Hình 1.4 biểu diễn độ dịch chuyển tương ứng của miệng vi kẹp trong không khí
khi có thế dc áp dụng tới chấp hành điện nhiệt. Độ dịch chuyển này là tổng số dịch
chuyển của hai miệng vi kẹp khi cả hai cánh tay hoạt động. Sai số của phép đo được
ước lượng là 1.5 µm. Sự di chuyển cực đại 32 µm được đo tại điện áp ứng dụng 4.5 V.
Do vậy, những vi kẹp này có khả năng thao tác với các vật có đường kính giữa 8 và 40
µm.
Hình 1.4: Sự dịch chuyển miệng của vi kẹp có gắn cảm biến tương ứng với điện áp
cung cấp. Đo được độ dịch chuyển tối đa là 32 µm tại 4.5 V
Công suất tiêu thụ của nguồn được tính dựa trên điện áp và dòng tương ứng trên vi
chấp hành điện nhiệt. Hình 1.5 biểu diễn độ dịch chuyển miệng vi kẹp khi tương ứng
với công suất tiêu thụ. Trung bình thiết bị cần 5 mW cho 1 µm dịch chuyển của miệng
vi kẹp.
Hình 1.5: Sự dịch chuyển của miệng vi kẹp tương ứng với công suất nguồn tiêu thụ.
Ninh Văn Trưởng – K49ĐB
4
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Hình 1.6 biểu diễn tín hiệu đầu ra của cầu Wheatstone tương ứng với điện áp đặt
trên vi chấp hành điện nhiệt. Giá trị điện trở ban đầu của áp điện trở tại nhiệt độ phòng
là 39 kOhm. Điện áp nuôi cho cầu là 1 V dc. Điện áp ra lớn nhất là 49 mV tại điện áp
đặt lên vi kẹp là 4.5 V. Mối quan hệ giữa điện áp ra và độ dịch chuyển miệng của vi kẹp
có gắn cảm biến được biểu diễn trong hình 1.7. Độ nhạy của vi kẹp có gắn cảm biến là
1.5 kV/m. Đường cong tuyến tính này trong phạm vi 2 %.
Hơn nữa, hình 1.6 biểu diễn thế đầu ra của cảm biến lực áp trở cantilever khi vi
kẹp kẹp một dây kim loại có đường kính 23 µm. Hai miệng của vi kẹp có gắn cảm biến
đóng từ từ cho tới khi nó kẹp được vật.

Lực tiếp xúc giữa miệng của vi kẹp và vật được kẹp có thể được ước lượng thông
qua sự dịch chuyển của vi kẹp trong hình 1.6.
Hình 1.6: Biểu diễn mối liên hệ giữa điện áp ra của cầu Wheatstone và điện áp ứng
dụng.
Hình 1.7: Đầu ra của cảm biến lực cantilever tương ứng với độ dịch chuyển miệng của
vi kẹp có gắn cảm biến.
Ninh Văn Trưởng – K49ĐB
5
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Hình 1.8 biểu diễn lực tiếp xúc giữa hai miệng của vi kẹp và vật được kẹp tương
ứng với giá trị điện áp đặt lên vi kẹp. Lực tiếp xúc bằng không cho tới khi hai miệng
kẹp vào vật tại điện áp khoảng 3.75 V. Sau đó lực tiếp xúc được tăng tới 135 mN tại
điện áp ứng dụng là 4.5 V.
Hình 1.8: Biểu diễn lực tiếp xúc giữa hai miệng của vi kẹp và những vật được giữ
tương ứng với giá trị điện áp ứng dụng.
Ninh Văn Trưởng – K49ĐB
6
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
1.2 Bài toán xây dựng hệ thống điều khiển.
Hoạt động của vi kẹp sẽ được cải thiện bằng việc sử dụng một hệ thống điều khiển
vòng kín. Một hệ thống điều khiển vòng kín sử dụng độ dịch chuyển và tín hiệu lực
phản hồi để điều khiển trạng thái của vi kẹp. Nó tận dụng toàn bộ sự thuận lợi của hệ
thống vòng lặp: tăng độ chính xác và cải thiện tốc độ của thao tác, và sự ổn định của
quá trình thao tác.
Khóa luận này trình bày thiết kế, chế tạo và kết quả của mạch điện tử điều khiển
vòng kín. Hình 1.9 biểu diễn sơ đồ khối mạch điện của hệ thống điều khiển vòng kín.
Trong cấu hình này, vi kẹp có gắn cảm biến được kết nối tới máy tính (PC) thông qua
một bo mạch điều khiển. Điều khiển sẽ được thực hiện từ PC bằng phần mềm. Tín hiệu
lực phản hồi có được từ cảm biến thông qua một bộ khuếch đại sau đó được chuyển
thành tín hiệu số (ADC). Dựa trên giá trị so sánh giữa lực tham chiếu và lực phản hồi,

bộ chấp hành được điều khiển bởi một vi điều khiển thông qua mạch chuyển đổi số
tương tự (DAC). Để đảm bảo cho việc điều khiển đủ công suất, sau mạch DAC có thiết
kế thêm một tầng khuếch đại công suất phù hợp với vi kẹp. Đặc biệt trong bo mạch điều
khiển có sử dụng vi điều khiển MSP430F167. Vi điều khiển này tích hợp bộ ADC, DAC
12 bit để xử lý tín hiệu phản hồi và truyền tới PC, đồng thời nhận tín hiệu từ PC để thực
hiện thao tác điều khiển vi kẹp.
Hình 1.9: Sơ đồ mạch nguyên lý của hệ thống điều khiển
1.3 Yêu cầu thiết kế hệ thống điều khiển
Điều kiện tiên quyết của hệ thống điều khiển là phải đảm bảo tính ổn định, nhận
và xử lý tín hiệu điều khiển phải chính xác, công suất đủ lớn để cung cấp cho vi kẹp.
Việc xử lý tín hiệu lực phản hồi và tín hiệu điều khiển từ PC đủ nhanh, giảm thiểu tối đa
trễ trong quá trình điều khiển. Bo mạch điều khiển đáp ứng được những thông số kĩ
thuật như đã được trình bày trong phần trên.
Ninh Văn Trưởng – K49ĐB
7
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Chương 2
GIỚI THIỆU HỌ VI ĐIỀU KHIỂN MSP430x1xx
2.1 Giới thiệu
MSP430 là một sự kết hợp chặt chẽ của một CPU RISC 16 bit, những khối ngoại
vi, và hệ thống xung linh hoạt.
Những đặc tính của hộ vi điều khiển MSP430x1xx gồm:
- Kiến trúc nguồn điện cực thấp để mở rộng tuổi thọ của Pin
+ 0.1-
µ
A duy trì RAM
+ 0.8-
µ
A chế độ xung thời gian thực
+ 250-

µ
A/MIPS tích cực
- Xử lý tín hiệu tương tự với hiệu xuất cao :
+ 12-bit hoặc 10-bit ADC – 200Ksps, cảm biến nhiệt, V(Ref).
+ 12-bit kép DAC.
Hình 2.1: Cấu trúc vi điều khiển MSP430
2.2 Không gian địa chỉ
Cấu trúc vi điều khiển MSP430 có một địa chỉ không gian nhớ được chia sẻ với
các thanh ghi chức năng đặc biệt (SFRs), các bộ ngoại vi, RAM, và bộ nhớ Flash/ROM
được biểu diễn trên hình vẽ. Việc truy cập mã chương trình luôn luôn được thực hiện
trên một địa chỉ chẵn. Dữ liệu có thể được truy cập như là những byte hay những từ.
Không gian địa chỉ nhớ là 64 KB có thể mở rộng hơn nữa cho những kế hoạch khác.
Ninh Văn Trưởng – K49ĐB
8
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Hình 2.2: Sơ đồ bộ nhớ
2.2.1 Flash/ROM
Địa chỉ bắt đầu của Flash/ROM phụ thuộc vào số lượng Flash/ROM hiện có và
thay đổi tùy theo loại chip. Địa chỉ kết thúc cho Flash/ROM là 0FFFFh. Flash có thể
được sử dụng cho cả mã và chương trình. Những bảng từ hay byte có thể được cất và sử
dụng trong Flash/ROM mà không cần bảng sao chép tới RAM trước khi sử dụng chúng.
2.2.2 RAM
RAM có địa chỉ bắt đầu tại 0200h. Địa chỉ kết thúc của RAM phụ thuộc vào số
lượng RAM có và thay đổi tùy thuộc vào từng dòng vi điều khiển. RAM có thể được sử
dụng cho cả mã và dữ liệu.
2.2.3 Những khối ngoại vi
Những module giao tiếp ngoại vi được xắp xếp vào không gian địa chỉ. Không
gian địa chỉ từ 0100h tới 01FFh được dành riêng cho module ngoại vi 16 bit. Những
module này có thể được truy cập với những từ chỉ dẫn(lệnh).
Không gian địa chỉ từ 010h tới 0FFh được dành riêng cho module ngoại vi 8 bit.

Ninh Văn Trưởng – K49ĐB
9
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
2.2.4 Những thanh ghi chức năng đặc biệt ( SFR )
Một vài chức năng ngoại vi được cấu hình trong thanh ghi chức năng đặc biệt.
Những thanh ghi chức năng đặc biệt được nằm trong 16 byte thấp của không gian địa
chỉ. Những SFR phải được truy cập bằng việc sử dụng câu lệnh byte.
2.2.5 Truy cập bộ nhớ
Những byte được nằm tại những địa chỉ chẵn hay lẻ. Những từ chỉ nằm tại địa chỉ
chẵn được biểu diễn trong hình 1-3. Khi sử dụng từ chỉ dẫn, chỉ những địa chỉ chẵn có
thể được sử dụng. Những byte thấp của một từ luôn luôn là một địa chỉ chẵn. Byte cao ở
tại địa chỉ lẻ tiếp theo. Ví dụ, nếu một từ dữ liệu nằm tại địa chỉ xxx4h, kết thúc byte
thấp của từ dữ liệu nằm tại địa chỉ xxx4h, và byte cao của từ đó nằm tại địa chỉ xxx5h.
Hình 2.3: Những bit, những byte, và những từ trong một trật tự byte bộ nhớ
Ninh Văn Trưởng – K49ĐB
10
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
2.3 Cổng vào/ra số
Trong phần này chúng ta mô tả hoạt động của các cổng vào ra số. Những cổng P1-
P2 được bổ xung trong những vi điều khiển MSP430x11xx. Những cổng P1-P3 được bổ
xung trong những vi điều khiển MSP430x12xx. Những cổng P1-P6 được bổ xung trong
những vi điều khiển MSP430x13xx, MSP430x14xx, MSP430x15xx, và trong những vi
điều khiển MSP430x16xx.
2.3.1 Giới thiệu vào/ra số
Họ vi điều khiển MSP430 có tới 6 cổng vào/ ra số, P1-P6. Mỗi cổng có 8 chân
vào/ra. Bất kì một chân vào/ra số nào đều có thể được cấu hình cho việc điều khiển
riêng rẽ đầu vào hay đầu ra, và mỗi đương vào/ra có thể đọc hay viết riêng rẽ.
Những cổng P1 và P2 có khả năng ngắt. Mỗi đường ngắt cho P1 và P2 vào/ra có
thể được cho phép riêng rẽ và được cấu hình để cung cấp một ngắt trên một sườn lên
hay xuống cả một tín hiệu ngắt.

2.3.2 Hoạt động vào/ra số
Vào/ra số được cấu hình bằng phần mềm. Việc cài đặt và hoạt động của vào/ra số
được thảo luận trong những phần dưới đây.
2.3.3 Thanh ghi đầu vào PxIN
Mỗi bít trong mỗi thanh ghi đầu vào PxIN nhắc tới giá trị tín hiệu đầu vào tại chân
vào/ra tương ứng khi chân đó được cấu hình như chức năng vào/ra.
Bit = 0: Đầu vào là mức thấp
Bit = 1: Đầu vào là mức cao
2.3.4 Thanh ghi ra PxOUT
Mỗi bit trong trong mỗi thanh ghi PxOUT là giá trị đầu ra trên chân vào/ra tương
ứng được cấu hình là chức năng vào/ra và điều khiển đầu ra.
Bit = 0 : Đầu ra là mức thấp
Bit = 1: Đầu ra là mức cao
2.3.5 Thanh ghi điều khiển PxDIR
Mỗi bit trong môi thanh ghi PxDIR lựa chọn sự điều khiển tương ứng chân vào/ra
của chức năng được lựa chọn cho chân đó. Những bit PxDIR cho những chân vào/ra khi
được đặt cho những chức năng đặc biệt ngoài chức năng vào/ra thông thường phải được
đặt cùng với một thanh ghi chức năng khác nữa.
Bit = 0: Chân của cổng được điều khiển là đầu vào
Bit=1:Chân của cổng được điều khiển là đầu ra
Ninh Văn Trưởng – K49ĐB
11
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
2.3.6 Thanh ghi lựa chọn chức năng PxSEL
Những chân của các cổng thường được kết hợp với những module ngoại vi khác.
Một bit của PxSEL được sử dụng để lựa chọn chức năng cho chân-cổng vào/ra hay
module chức năng ngoại vi
Bit = 0: Chức năng vào/ra được lựa chọn cho chân
Bit = 1: Module chức năng ngoại vi được lựa chọn cho chân
2.4 USART giao tiếp ngoại vi, chế độ UART

Chương này sẽ bàn về hoạt động của chế độ không đồng bộ UART. USART0
được thực hiện trên các vi điều khiển MSP430x12xx, MSP430x13xx, và
MSP430x15xx. Trong sự bổ sung USART0, vi điều khiển MSP430x14xx và
MSP430x16xx thực hiện một modul đồng nhất USART thứ hai, USART1.
2.4.1 Chế độ hoạt động của UART
Trong chế độ không đồng bộ, USART kết nối MSP430 tới một hệ thống bên ngoài
qua 2 pin bên ngoài, URXD và UTXD. Chế độ UART được lựa chọn khi bit SYNC
được xoá.
Tính năng chế độ UART bao gồm:
- 7-hoặc-8 bit dữ liệu là lẻ, chẵn, hoặc không-chẵn lẻ.
- Thanh ghi đệm nhận và truyền riêng biệt.
- LSB-đầu tiên truyền và nhận dữ liệu.
- Chương trình hoá tốc độ baud với sự điều biến cho phân đoạn hỗ trợ
tốc độ baud.
- Trạng thái các cờ cho dò tìm lỗi và sự triệt và dò tìm địa chỉ.
- Khả năng ngắt độc lập cho nhận và truyền.
Ninh Văn Trưởng – K49ĐB
12
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Hình 2.4 Sơ đồ của chế độ hoạt động USART
2.4.2 Khởi tạo và xác lập lại chế độ hoạt động USART
USART được khởi động lại bởi một tín hiệu PUC hoặc bằng việc thiết lập bit
SWRST. Sau một PUC, bit SWRST được tự động thiết lập, giữ USART trong một điều
kiện reset. Khi thiết lập, bit SWRST xác lập lại bit Ex, UTXIEx, URXIFGx, RXWAKE,
TXEPT. Làm cho các cờ có thể truyền và nhận, URXEx và UTXEx, không được thay
đổi bởi SWRST. Xoá SWRT làm giảm USART cho hoạt động. Xem thêm chương
modul USART, chế độ 12C cho USART0 khi lại định hình từ chế độ I
2
C tới chế độ
UART.

Chú ý: Khởi tạo hoặc định hình lại modul USART.
Sự khởi tạo/định hình lại USART yêu cầu những quá trình sau:
1) Thiết lập SWRST (BIS.B #RST, &UxCTL).
2) Khởi tạo tất cả thanh ghi USART với SWRST = 1 (bao gồm
UxCTL).
Ninh Văn Trưởng – K49ĐB
13
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
3) Làm cho modul USART có thể qua MExSFRs (URXEx và/hoặc
UTXEx).
4) Xoá SWRST qua phần mềm (BIC.B #SWRST, &UxCTL).
5) Làm cho các ngắt (tuỳ chọn) có thể qua IExSFRs (URXIEx và/hoặc
UTXIEx).
2.4.3 Dạng kí tự khung truyền
Đặc tính định dạng UART, cho thấy trong hình 2.5, gồm có một bit start, 7 hoặc 8
bit dữ liệu, một bit /lẻ/không chẵn lẻ, một bit địa chỉ (chế độ địa chỉ-bit), và một hoặc
hai bit stop. Bit chẵn lẻ được định nghĩa bởi lựa chọn nguồn xung và cài đặt của tốc độ
baud các thanh ghi.
Hình 2.5: Dạng kí tự khung truyền
Ninh Văn Trưởng – K49ĐB
14
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
2.4.4 Định dạng truyền không đồng bộ
Khi hai thiết bị truyền thông không đồng bộ, định dạng đường-không dùng đến
được sử dụng cho giao thức. Khi 3 hoặc nhiều hơn thiết bị truyền thông, USART hỗ trợ
đường-không dùng đến và bit-địa chỉ định dạng truyền thông đa xử lý.
Khi MM = 0, định dạng đa xử lý đường-không dùng đến được lựa chọn. Những
khối dữ liệu được phân ra bằng một thời gian không dùng đến trên các đường truyền
hoặc nhận như được thấy trong hình 13-3. Một đường nhận không dùng đến được tạo ra
khi 10 hoặc nhiều hơn tiếp tục những con số một (những đánh dấu) được nhận sau khi

bit stop đầu tiên của một đặc tính. Khi 2 bit stop được sử dụng cho đường không dùng
đến thì bit stop thứ hai được đếm như bit đánh dấu đầu tiên của giai đoạn không dùng
đến.
Đặc tính đầu tiên nhận sau khi một giai đoạn không dùng đến là một đặc tính địa
chỉ. Bit RXWAKE được sử dụng như một thẻ địa chỉ cho mỗi khối của đặc tính. Trong
định dạng đa xử lý đường-không dùng đến, bit này được thiết lập khi một đặc tính nhận
được một địa chỉ và được chuyển tới UxRXBUF.
Hình 2.6: Định dạng Idle-Line
Ninh Văn Trưởng – K49ĐB
15
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Bit URXWIE được sử dụng để điều khiển sự thu nhận dữ liệu trong định dạng đa
xử lý đường-không dùng đến. Khi bit URXWIE được thiết lập, tất cả các đặc tính
không-địa chỉ được tập hợp nhưng chưa được chuyển vào trong UxRXBUF, và các ngắt
không được tạo ra. Khi một đặc tính địa chỉ được nhận, nhận được khi được kích hoạt
tạm thời để chuyển đặc tính tói UxRXBUF và các thiêt lập cờ ngắt URXIFGx. Bất kỳ
cờ lỗi nào có thể ứng dụng được cũng được thiết lập. Có thể sử dụng sau khi nhận địa
chỉ thích hợp.
Nếu một địa chỉ được nhận, việc sử dụng phần mềm có thể là thích hợp và phải
xác lập lại URXWIE để tiếp tục nhận dữ liệu. Nếu URXWIE còn lại thiết lập, chỉ đặc
tính địa chỉ sẽ được nhận. bit URXWIE không được sử đổi bằng USART phần cứng tự
động.
Cho truyền địa chỉ trong định dạng đa xử lý đường-không dùng đến, một giai đoạn
không dùng đến đặc biệt có thể tạo ra bởi USART để tạo ra những định dạng đặc tính
địa chỉ trên UTXDx. Tạm thời đánh thức cờ (WUT) là một cờ bên trong bộ đệm-kép với
việc sử dụng-truy nhập bit TXWAKE. Khi máy phát tải từ UxTXBUF, WUT cũng được
tải từ TXWAKE khởi động lại bit TXWAKE.
Quy trình sau khi gửi ra ngoài một khung không dùng đến để cho biết một đặc tính
địa chỉ sẽ đi theo:
1) Thiết lập TXWAKE, sau khi viết bất kỳ đặc tính nào tới UxTXBUF.

UxTXBUF phải được đọc cho dữ liệu mới (UTXIF = 1).
Giá trị TXWAKE được chuyển tới WUT và những nội dung của
UxTXBUF được chuyển để truyền vào thanh ghi khi chuyển thanh ghi
được đọc cho dữ liệu mới. Những thiết lập này, mà bộ triệt bắt đầu, dữ
liệu, và bit chẵn lẻ của một truyền thông thông thường, sau khi truyền một
giai đoạn không dùng đến của chính xác 11 bit. Khi 2 bit stop được sử
dụng cho đường không dùng đến, bit stop thứ hai được đếm như bit đánh
dấu đầu tiên của giai đoạn không dùng đến. TXWAKE được tự động xác
lập lại.
2) Viết đặc tính địa chỉ đích tới UxTXBUF. UxTXBUF cần phải được sẵn
sàng cho dữ liệu mới (UTXIFGx = 1).
Miêu tả đặc tính mới của lý thuyết địa chỉ được chuyển ra ngoài sau đó
nhận dạng-địa chỉ giai đoạn không dùng đến trên UTXDx. Đầu tiên viết
đặc tính “không bảo dưỡng” tới UxTXBUF được cần thiết trong thứ tự
chuyển bit TXWAKE tới WUT và tạo ra một điều kiện đường-không
dùng đến. Dữ liệu này được loại bỏ và không xuất hiện trên UTXDx.
Ninh Văn Trưởng – K49ĐB
16
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
2.4.5 USART cho phép nhận
Bit cho phép nhận, URXEx, cho phép hoặc vô hiệu hoá sự tiếp nhận dữ liều trên
URXDx như được cho thấy trong hình 13-5. Việc vô hiệu hoá dừng nhận USART nhận
thao tác sau khi hoàn thành của bất kỳ ký tự hiện tại nào được nhận hoặc ngay lập tức
nếu thao tác không nhận thì hoạt động. Bộ đệm dữ liệu-nhận, UxRXBUF, chứa đựng ký
tự di chuyển từ thanh ghi RX chuyển sau khi ký tự được nhận.
Hình 2.7: Sơ đồ khối của quá trình nhận
Chú ý: làm cho có thể-lại nhận (thiết lập URXEx): chế độ UART.
Khi quá trình nhận được vo hiệu hoá (URXEx = 0), việc cho phép-lại nhận
(URXEx = 1) là không đồng bộ với bất kỳ dòng dữ liệu nào đó có thể có mặt trên
URXDx vào thời gian. Không đồng bộ có thể thực hiện bởi việc kiểm tra điều kiện cho

một đường rỗi trước khi việc nhận một ký tự hợp lệ (Xem URXWIE).
2.4.6 USART cho phép truyền
Khi UTXEx được thiêt lập, truyền UART là có thể. Sự truyền được bắt đầu bởi
việc viết dữ liều vào UxTXBUF. Dữ liệu sau khi di chuyển để truyền vị trí thanh ghi
trên BITCLK tiếp theo sau khi vị trí thanh ghi TX trống rỗng, và sự truyền bắt đầu. Quá
trình này được cho thấy trong hình 13-6.
Khi bit UTXEx được reset máy phát được dừng. Mọi dữ liệu di chuyển tới
UxTXBUF và mọi hoạt động truyền của dòng dữ liệu trong truyền thanh ghi trước khi
được xoá UTXEx sẽ tiếp tục cho đến khi tất cả dữ liệu truyển được hoàn thành.
Ninh Văn Trưởng – K49ĐB
17
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Hình 2.8: Sơ đồ trạng thái của khả năng truyền
.
Khi máy phát được cho phép (UTXEx = 1), dữ liệu không thể viết vào UxTXBUF
trừ khi nó được đọc cho biết dữ liệu mới bởi UTXIFGx = 1. Sự xâm phạm có thể kết
quả trong một sự truyền không đúng nếu dữ liệu trong UxTXBUF được sửa đổi như nó
được bắt đầu di chuyển vào trong vị trí thanh ghi TX.
Khuyến cáo truyền đó được vô hiệu hoá (UTXEx = 0) chỉ sau khi mọi hoạt động
truyền hoàn thành. Điều này cho biết bởi một thiết lập truyền bit (TXEPT = 1) trống
rỗng. Mọi dữ liệu viết vào UxTXBUF trong khi máy phát được vô hiệu hoá sẽ được
giữa trong bộ đệm nhưng sẽ không di chuyển để truyền tới vị trí thanh ghi hoặc truyền.
UTXEx được thiết lập một lần, dữ liệu trong bộ đệm truyền được tải ngay lập tức vào
trong truyền vị trí thanh ghi và lại tiếp tục truyền ký tự.
2.5 Bộ chuyển đổi tương tự số 12 bit ADC12
2.5.1 Giới thiệu ADC12
Modul ADC12 là khối chuyển đổi tương tự- số 12 bit, điều khiển lựa chọn mẫu, và
một bộ đệm 16 chuyển đổi-và-điều khiển. Bộ đệm chuyển đổi số cho phép lên tới 16
mẫu ADC độc lập để chuyển đổi và lưu trữ mà không có bất kỳ có sự can thiệp nào của
CPU.

Tính năng của ADC bao gồm:
- Tốc độ chuyển đổi cực đại lớn hơn 200 Ksps.
- Bộ chuyển đổi 12-bit.
- Lấy mẫu-và-giữ mẫu với chương trình hoá giai đoạn lấy mẫu được
điều khiển bởi phần mềm hoặc các bộ định thời.
- Sự bắt đầu chuyển đổi bởi phần mềm, Timer_A, hoặc Timer_B.
- Lựa chọn phần mềm trên-chip tham chiếu điện thể tạo ra (1.5V hoặc
2.5 V).
- 8 kênh riêng lẻ được định hình đầu vào bên ngoài.
Ninh Văn Trưởng – K49ĐB
18
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
- Lựa chọn kênh độc lập cho các nguồn tham chiếu cho cả tham chiếu
dương và âm.
- Lựa chọn chuyển đổi nguồn xung cho việc chuyển đổi.
- Các chế độ chuyển đổi kênh-đơn, lặp lại-đơn-kênh, nối tiếp, và lặp
lại-nối tiếp.
- 16 Thanh ghi lưu trữ kết quả chuyển đổi.
Hình 2.11: Sơ khối chuyển đổi ADC12
Ninh Văn Trưởng – K49ĐB
19
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
2.5.2 Hoạt động của ADC12
Modul ADC12 được cấu hình bởi phần mềm. Cài đặt và hoạt động của ADC12
được bàn luận trong những phần sau.
2.5.2.1 Nhân 12 bit của ADC12
Sự mô tả nhân ADC chuyển đổi đầu vào tương tự tới số 12 bit và kết quả lưu trữ
chuyển tới bộ nhớ. Nhân sử dụng hai mức điện thế chương trình hoá/có thể lựa chọn (V
+R
và V

−R
) để định nghĩa giới hạn cao hơn và thấp hơn của chuyển đổi.Kênh đầu vào và
các mức thông số điện áp (V
+R
và V
−R
) được định nghĩa trong bộ nhớ chuyển đổi-điều
khiển.
Công thức chuyển đổi ADC kết quả N
ADC
là :
N
ADC
= 4095 x
−+


RR
VV
Vin
-R
V
Nhân ADC12 được định hình bằng hai thanh ghi điều khiển, ADC12CTL0 và
ADC12CTL1. Nhân có thể cùng với bit ADC12ON. ADC12 có thể được tắt khi không
sử dụng nguồn lưu trữ. Với ít ngoại lệ của ADC12 bit điều khiển có thể chỉ sửa đổi khi
ENC = 0. ENC phải được thiết lập tới 1 trước khi có bất kỳ sự chuyển đổi nào có thể
xảy ra.
Lựa chọn chuyển đổi xung:
ADC12CLK được sử dụng cả hai như xung chuyển đổi và để tạo ra giai đoạn lấy
mẫu khi chế độ xung lấy mẫu được lựa chọn. Nguồn xung ADC12 được lựa chọn sử

dụng bit ADC12SSELx và có thể tách ra từ việc sử dụng 1-8 bit ADC12DIVx. Nguồn
ADC12CLK có thể là SMCLK, MCLK, ACLK, và một bộ dao động ADC12OSC bên
trong.
ADC12OSC, phát sinh nội tại, trong phạm vi 5-MHz, nhưng các vi điều khiển
riêng lẻ là khác nhau, cung cấp điện áp, và nhiệt độ. Xem bảng dữ liệu vi điều khiển-
riêng biệt cho chi tiết kỹ thuật ADC12OSC.
Người dùng phải bảo đảm rằng chọn xung cho ADC12CLK còn lại hoạt động cho
đến khi kết thúc một chuyển đổi. Nếu đồng hộ được gỡ bỏ trong một chuyển đổi, hoạt
động sẽ không hoàn thành và bất kỳ kết quả nào cũng sẽ không hợp lệ.
2.5.2.2 Các đầu vào của ADC12 và bộ hợp kênh
Các đầu vào là bộ hợp kênh với cổng pin P6. Các bit P6SELx cung cấp khả năng để vô hiệu
hoá cổng đầu vào pin và đầu ra bộ đệm.
; P6.0 và P6.1 định hình cho đầu vào tương tự
BIS.B #3h, &P6SEL ; P6.1 và P6.0 chức năng ADC12.
2.5.2.3 Điện áp tham chiếu
Modul ADC12 chứa đựng một tham chiếu điện áp xây dựng-trong với hai mức điện áp có thể
chọn được, 1.5 V và 2.5 V. Một trong hai tham chiếu điện áp này có thể sử dụng bên trong và
bên ngoài trên pin V
+EFR
.
Ninh Văn Trưởng – K49ĐB
20
Khóa luận tốt nghiệp ĐH Công Nghệ - ĐHQGHN
Thiết lập REFON = 1 cho phép tham chiếu bên trong. Khi REF2_5V = 1, tham
chiếu bên trong là 2.5 V, tham chiếu là 1.5 V khi REF2_5V = 0. tham chiếu có thể tắt để
lưu trữ nguồn khi không sử dụng.
Chế độ lấy mẫu mở rộng:
Chế độ lấy mẫu mở rộng được lựa chọn khi SHP = 0. Tín hiều trự tiếp SHI điều
khiển SAMPCON và định nghĩa độ dài của thời kỳ lấy mẫu t
sample

. Khi SAMPCON là
cao, sự lấy mẫu hoạt động. chuyển tiếp từ cao-xuống-thấp SAMPCON bắt đầu chuyển
đổi sau khi không đồng bộ với ADC12CLK. Xem hình 17-3.
Hình 2.13: Chế độ lấy mẫu mở rộng
Ninh Văn Trưởng – K49ĐB
21

×