ĐỀ SỐ 01
PHÒNG GD & ĐT
THANH BA
TRƯỜNG THCS THANH XÁ
ĐỀ KIỂM TRA HỌC KÌ I
MƠN: TỐN 9
Thời gian làm bài: 90 phút
(Đề thi gồm 02 trang)
Thí sinh khơng làm vào đề thi!
I. TRẮC NGHIỆM( 3điểm) Hãy chọn một đáp án mà em cho là đúng nhất.
Câu 1: Biểu thức 2 x 1 xác định khi:
1
1
1
x
x
x
2.
2.
2.
A.
B.
C.
Câu 2: Hàm số y 2 x 1 có đồ thị là hình nào sau đây?
D.
x
1
2.
1
1
Câu 3: Giá trị của biểu thức 2 3 2 3 bằng
1
B. 1.
C. 4.
D. - 4.
A. 2 .
Câu 4: Đường trịn là hình:
A. Khơng có trục đối xứng
B. Có một trục đối xứng
C. Có hai trục đối xứng
D. Có vơ số trục đối xứng
Câu 5: Trong các hàm số sau, hàm số nào đồng biến ?
A. y = 2 – x. B. y 5x 1 .
D. y = 6 – 3(x – 1)
C. y ( 3 1)x 2 .
Câu 6: Nếu hai đường thẳng y = -3x + 4 (d1) và y = (m+1)x + m (d2) song song
với nhau thì m bằng
A. – 2.
B. -4
C. 4.
D. – 3.
Câu 7: Trên hình 1.2 ta có:
H 1.2
9
x
y
15
A. x = 5,4 và y = 9,6
B. x = 5 và y = 10
C. x = 10 và y = 5
D. x = 9,6 và y = 5,4
Câu 8: Cho tam giác ABC vng tại A có AB = 18; AC = 24. Bán kính đường
trịn ngoại tiếp tam giác đó bằng
A. 30.
B. 20.
C. 15.
D. 15 2 .
Câu 9: Cho (O; 1 cm) và dây AB = 1 cm. Khoảng cách từ tâm O đến AB bằng
1
A. 2 cm.
3
B. 2 cm.
1
D. 3 cm.
3
C. 3 cm.
O
O
Câu 10: Cho 35 ; 55 . Khi đó khẳng định nào sau đây là Sai?
A. sin = sin
B. sin = cos
C. tan = cot
D. cos = sin
Câu 11: Điểm nào sau đây thuộc đồ thị hàm số y = - 3x + 2 là:
A. (-1;-1)
B. (-1;5)
C. (2;-8)
D. (4;-14)
Câu 12: Cho đường thẳng y = ( 2m+1)x + 5. Góc tạo bởi đường thẳng này với
trục Ox là góc nhọn khi:
1
1
1
D. m = 1
A. m > - 2
B. m < - 2
C. m = - 2
II. TỰ LUẬN( 7 điểm)
Câu 1 ( 1 điểm): Rút gọn biểu thức
3
3
3
a) 3 2 48 3 75 4 108
b) 3 8 27 64
Câu 2 ( 0,5 điểm): Giải hệ phương trình bằng phương pháp thế
=5
{x3−2x +yy=−3
Câu 3 ( 1,5 điểm): Cho biểu thức
x 1
x
1
A=
x 1
1
1
x 1
x
với x > 0 và x 1
Cho biểu thức :
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A = 1
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên.
Câu 4 ( 1 điểm): Cho hàm số y = -2x + 1 (d)
a)Vẽ đồ thị (d) của hàm số y = -2x + 1
b)Xác định các hệ số a và b của hàm số y = ax + b, biết rằng đồ thị của hàm
số này song song với đồ thị (d) và đi qua điểm A(2; 1).
Câu 5 ( 3 điểm): Trên nửa đường trịn (O;R) đường kính BC, lấy điểm A sao
cho BA = R.
a) Chứng minh tam giác ABC vng tại A và tính số đo các góc B, C của
tam giác vuông ABC.
b) Qua B kẻ tiếp tuyến với nửa đường trịn (O), nó cắt tia CA tại D. Qua
D kẻ tiếp tuyến DE với nửa đường tròn (O) (E là tiếp điểm). Gọi I là giao điểm
của OD và BE. Chứng minh rằng OD ⊥ BE v à DI . DO=DA . DC
c) Kẻ EH vuông góc với BC tại H. EH cắt CD tại G. Chứng minh IG song
song với BC.
Chúc các em làm bài thi tốt!
Họ và tên:…………………………………..Lớp:…….
Cán bộ coi thi khơng giải thích gì thêm!
3.Đáp án và thang điểm
Đề số 01
I. Trắc nghiệm: Mỗi câu trả lời đúng được 0,25 điểm
1. B
2.D
3.C
4. D
5. C
7. A
8. C
9. B
10. A
11. B
II. Tự luận
Câu
6. B
12. A
Đáp án
Điểm
a) A = 3 2 48 3 75 4 108
1
(1đ)
0.25
3 8 3 15 3 24 3
=
0.25
16 3
3
3
3
b) 3 8 27 64
6 34
0.25
=
=7
2
(0,5đ)
0.25
=5
{x3−2x +yy=−3
y=5−3 x
{x −10+6
x=−3
y=5−3 x
{x −2(5−3
x )=−3
0.25
y 5 3x
7 x 7
y=2
{x=1
0,25
Vậy hệ phương trình có nghiệm duy nhất (1;2)
3
(1,5đ)
x 1
x 1
1
1
x1
x 1
x
a) A=
x+2 √ x+1−x+ 2 √ x−1 √ x−1
=
( √ x +1)( √ x−1)
√x
4√x
√ x−1
.
=
( √ x+1)( √ x−1) √ x
4
=
√ x +1
4
=1
b) A= 1 thì
√ x +1
√ x+1=4 x= 9
c) Để A nguyên thì √ x+1 ∈Ư (4)
=> √ x+1 ∈{1;−1 ; 2;−2 ; 4 ;−4 }
=> √ x ∈{0 ; 1; 3 } . Kết hợp với ĐKXĐ ta được:
(
)(
a)Bảng 1 số giá trị tương ứng
x
0
1/2
y=-2x+1 1
0
4(1đ) Đồ thị hàm số (d) đi qua điểm
có tọa độ ( 0;1) và ( 1/2 ; 0).
0,25
)
0,25
0,25
0,25
0,25
x ∈ {9 }
0,25
y
0
0,25
1/2
x
0,25
b) Vì đồ thị của hàm số y = ax + b song song với đồ thị (d) nên
a= -2 và b ≠ 1.
Hàm số có dạng y = -2x + b
Vì đồ thị của hàm số đi qua điểm A(2; 1).
Nên 1= - 2.2+ b
b = 1+4= 5
Vậy a = -2, b = 5
Vẽ hình, ghi GT, KL đúng.
4(3đ)
0,25
0,25
0,5
a) Ta có OA = R, BC = 2R
BC
OA OB OC
R
2
ABC vuông tại A(định lý đảo đường trung tuyến ứng
0,5
với cạnh huyền)
Ta có
sin C
AB
R 1
300
C
BC 2 R 2
0,25
0,25
900 300 600
B
b) Vì DB, DE là 2 tiếp tuyến cắt nhau DB DE và
OB OE R
OD là đường trung trực BE OD BE
DBO vuông tại B, BI là đường cao
DI .DO DB 2 (áp dụng hệ thức lượng) (1)
0,5
0,25
DBC vuông tại B, BA là đường cao
DB 2 DA.DC (hệ thức lượng trong tam giác vuông ) (2)
Từ (1), (2) DI .DO DA.DC
BEC
900 BEF
900
c) Kéo dài CE cắt BD tại F. Vì
chất kề bù)
mà DB = DE (chứng minh trên)
DFE BCE 90
0,25
(tính
(*)
0
DEF+DEB=900 FED+DBE 90 0
Ta có
( Vì DBE
cân tại D)
Mà: DBE BEC ( Vì cùng phụ với EBC )
DFE DEF . Suy ra tam giác DEF cân tại D
DE DF (**)
Từ (*) và (**) BD DF
GH GC
(Ta let ) (3)
BD DC
GE GC
(4)
Vì GE // DF (cùng BC ) DF DC
GH GE
do BD DF (cmt ) GH GE
BD DF
Từ (3) và (4)
Vì GH / / BD (cùng BC )
0,25
Mà IB = IE (OD trung trực BE)
Do đó IG là đường trung bình tam giác EHB
IG / / BH IG / / BC .
(Lưu ý: HS làm cách khác mà đúng vẫn cho điểm tối đa)
0,25
ĐỀ SỐ 02
PHÒNG GD & ĐT THANH BA
TRƯỜNG THCS THANH XÁ
ĐỀ KIỂM TRA HỌC KÌ I
MƠN: TỐN 9
Thời gian làm bài: 90 phút
(Đề thi gồm 02 trang)
Thí sinh khơng làm vào đề thi!
I. TRẮC NGHIỆM( 3điểm) Hãy chọn một đáp án mà em cho là đúng nhất.
Câu 1: Biểu thức 2 x 1 xác định khi:
1
1
x
2.
2.
A.
B.
Câu 2: Đường tròn là hình:
A. Có vơ số trục đối xứng
C. Có hai trục đối xứng
x
C.
x
1
2.
D.
x
1
2.
B. Có một trục đối xứng
D. Khơng có trục đối xứng
2
2
5 1
5 1 bằng
Câu 3: Giá trị của biểu thức
B. 2
A. 2 5
C. 5
Câu 4: Trong các hàm số sau, hàm số nào nghịch biến ?
A. y = 2 + x. B. y 5x 1 .
C. y ( 3 1)x 2 .
Câu 5: Trên hình 1.4 ta có:
D. 5
D. y = 6 – 3(x – 1)
H 1.4
6
8
x
y
A. x = 10 và y = 4,8
B. x = 4,8 và y = 9,6
C. x = 4,8 và y = 10
D. x = 10 và y = 5,4
Câu 6: Cho tam giác ABC vuông tại A có AB = 18; AC = 24. Bán kính đường
trịn ngoại tiếp tam giác đó bằng:
A. 25,5
B. 30
C. 15,5
D. 15
Câu 7: Cho (O; 1 cm) và dây AB = 1 cm. Khoảng cách từ tâm O đến AB bằng
1
1
3
3
B. 2 cm.
A. 2 cm.
D. 3 cm.
C. 3 cm.
O
O
Câu 8: Cho 42 ; 48 . Khi đó khẳng định nào sau đây là Sai?
A. sin = cos
B. cos = sin
C. tan = cot
D. cos = cos
Câu 9: Điểm nào sau đây thuộc đồ thị hàm số y = 3x + 2 là:
A. (1;-1)
B. (-1;5)
C. (-2;- 4)
D. (-1;-5)
Câu 10: Cho đường thẳng y = ( 2m - 1)x + 6. Góc tạo bởi đường thẳng này với
trục Ox là góc nhọn khi:
1
A. m > 2
1
B. m < 2
1
C. m = 2
D. m = - 2
Câu 11: Nếu hai đường thẳng y = -3x - 4 (d1) và y = (1- m)x + m (d2) song song
với nhau thì m bằng:
A. 2.
B. - 2
C. 4.
D. – 4
y
2
x
1
Câu 12: Hàm số
có đồ thị là hình nào sau đây?
II. TỰ LUẬN( 7 điểm)
Câu 1 ( 1 điểm): Rút gọn biểu thức
12 2 75 3 300
1
108
3
3
3
3
a)
b) 3 125 27 64
Câu 2 ( 0,5 điểm): Giải hệ phương trình bằng phương pháp thế
=1
{3x+x−2 yy=3
Câu 3 ( 1,5 điểm): Cho biểu thức
1
x
1
A
:
x 1 x 1 x 1 với x 0 và x 1
Cho biểu thức :
a) Rút gọn biểu thức A
7
b) Tìm giá trị của x để A = 5
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên.
Câu 4 ( 1 điểm): Cho hàm số y = -3x + 3 (d)
a)Vẽ đồ thị (d) của hàm số y = -3x + 3
b)Xác định các hệ số a và b của hàm số y = ax + b, biết rằng đồ thị của hàm
số này song song với đồ thị (d) và đi qua điểm M(-2; 1).
Câu 5 ( 3 điểm): Trên nửa đường tròn (O;R) đường kính BC, lấy điểm A sao
cho BA = R.
a) Chứng minh tam giác ABC vng tại A và tính số đo các góc B, C của
tam giác vng ABC.
b) Qua B kẻ tiếp tuyến với nửa đường trịn (O), nó cắt tia CA tại D. Qua
D kẻ tiếp tuyến DE với nửa đường tròn (O) (E là tiếp điểm). Gọi I là giao điểm
của OD và BE. Chứng minh rằng OD ⊥ BE v à DI . DO=DA . DC
c) Kẻ EH vng góc với BC tại H. EH cắt CD tại G. Chứng minh IG song
song với BC.
Chúc các em làm bài thi tốt!
Họ và tên:…………………………………..Lớp:…….
Cán bộ coi thi khơng giải thích gì thêm!
3.Đáp án và thang điểm
Đề số 02
I. Trắc nghiệm: Mỗi câu trả lời đúng được 0,25 điểm
1. B
2.A
3.D
4. D
5. C
7. A
8. D
9. C
10. A
11. C
II. Tự luận
Câu
Đáp án
a) A =
1
(1đ)
6. D
12. D
=
12 2 75 3 300
Điểm
1
108
3
0.25
2 3 10 3 30 3 2 3
0.25
20 3
3
3
3
b) 3 125 27 64
0.25
= 15 – 3 - 4
=8
0.25
=1
{3x+x−2 yy=3
x=1−2 y
{3. ( 1−2
y )− y=3
y
{3−6x=1−2
y− y=3
0.25
2
(0,5đ)
x 1 2 y
7 y 0
y=0
{x=1
Vậy hệ phương trình có nghiệm duy nhất (1;0)
3
(1,5đ)
1
x
1
A
:
x 1 x 1 x 1
a)
√ x +1+ √ x .(√ x−1)
=
( √ x+1)( √ x−1)
2 √ x+1
=
√ x+ 1
7
2 √ x+1
=¿
b) A= 5 thì √ x+ 1
5. 2 x 1 7.
x 1
10 x 5 7 x 7 3 x 2
2
4
x x
3
9 ( Thỏa mãn ĐKXĐ)
4
7
x
9 thì A = 5
Vậy với
c) Để A nguyên thì √ x+1 ∈Ư (1)
=> √ x+1 ∈{1;−1 }
=> √ x ∈{0 ;−2 } . Kết hợp với ĐKXĐ ta được: x ∈ {0 }
0,25
0,25
0,25
0,25
0,25
0,25
0,25
a)Bảng 1 số giá trị tương ứng
x
0
1
y =-3x + 3 3
0
4(1đ) Đồ thị hàm số (d) đi qua điểm
có tọa độ ( 0;3) và ( 1 ; 0).
0,25
3
O
0,25
1
x
b) Vì đồ thị của hàm số y = ax + b song song với đồ thị (d) nên
a= -3 và b ≠ 3
Hàm số có dạng y = -3x + b
Vì đồ thị của hàm số đi qua điểm M(-2; 1).
Nên 1= - 3.(-2)+ b
b = 1-6=- 5
Vậy a = -3, b =- 5
Vẽ hình, ghi GT, KL đúng.
4(3đ)
0,25
0,25
0,5
a) Ta có OA = R, BC = 2R
BC
OA OB OC
R
2
ABC vuông tại A(định lý đảo đường trung tuyến ứng
với cạnh huyền)
0,5
0,25
Ta có
sin C
0,25
AB
R 1
300
C
BC 2 R 2
900 300 600
B
b) Vì DB, DE là 2 tiếp tuyến cắt nhau DB DE và
OB OE R
OD là đường trung trực BE OD BE
0,5
DBO vuông tại B, BI là đường cao
DI .DO DB 2 (áp dụng hệ thức lượng) (1)
DBC vuông tại B, BA là đường cao
0,25
DB 2 DA.DC (hệ thức lượng trong tam giác vuông ) (2)
Từ (1), (2) DI .DO DA.DC
BEC
900 BEF
900
c) Kéo dài CE cắt BD tại F. Vì
chất kề bù)
mà DB = DE (chứng minh trên)
DFE BCE 90
0,25
(tính
(*)
0
DEF+DEB=900 FED+DBE 90 0
Ta có
( Vì DBE
cân tại D)
Mà: DBE BEC ( Vì cùng phụ với EBC )
DFE DEF . Suy ra tam giác DEF cân tại D
DE DF (**)
Từ (*) và (**) BD DF
GH GC
(Ta let ) (3)
Vì GH / / BD (cùng BC ) BD DC
GE GC
(4)
BC
)
DF DC
Vì GE // DF (cùng
GH GE
do BD DF (cmt ) GH GE
BD DF
Từ (3) và (4)
0,25
Mà IB = IE (OD trung trực BE)
Do đó IG là đường trung bình tam giác EHB
IG / / BH IG / / BC .
(Lưu ý: HS làm cách khác mà đúng vẫn cho điểm tối đa)
Thanh Xá, ngày
24/12/2018
Duyệt của BGH
PHT
Duyệt của tổ CM
TT
Người soạn
0,25
Nguyễn Đỗ Việt Hòa
Trần Thị Yến
Trần Thị Thu Phương