DAI HQCQuac GIATHANHPHa HOcHI MINII
TRUONG DAI HQC KHOA HQC TV NHIEN
:;::, ~?
NGUYEN DINH HIEN
L!P TRINH TINH TOAN HINH THUC
TRONG PHUONG PHAP PHAN T\J HOU HA.N
GIAI M(rr s6 nA.I TOAN
CO HQC MOl TRUONG LIEN T{)C
Chuycn nganh: CO HQC V~T RAN BIEN D~NG
Ma 86: 1.02.21
T6M TA'l' LU~N AN TlEN SY ToAN LY
Thanh ph6 1-16CHi MINH
- 2003
LPr
(~l), Ie;
NCr~ H
10-03
tong tr}nh duQc hoan thal1h t~i Khoa Toan Til1 , TrU<1Iigf)~i
hQc khoa hQc tlf nhien, D~i hQc q'u6c gia th1inh ph6 H6 chi Minh.
Nguoi huang dfinkhoa hQc:
1./ pas. TS. NGG THANH PHONG
TrW!118D~tih()(,'Khoa h()(,'TV l1hiel1Tp.HCM
2./ TS. NGUYEN DONG
Vi~n Co h()(,'Ong dfl/18. Vi~n KH&CN Vi~t Nmn
Phan bi~n I: PGS.TSKH. NGUYEN VAN GIA
Vi~l1Co h(J(,'0118dfwg. Vifl1 KH&CN Viiit Nan?
Phan bi~n 2: PGS.TSKH. CHtJ VI~T C00NG
P!uln vi~n G3ng I1gM TMng tin c BQP
Phan bi~n 3: POSTS. NGG KIEtJ NHI
D~lih()(,'BelchK!lOaTp.HCM
Lu~n an se duQcbaa V9trltac H0i dOngchtm lu~n an dp
nhil nuac hQpt~i:
vao hOi giO ngay llulng Ham
co th@tlm hi@uJuan an tai:
A" ,{!
THV VI~N KHOA HOC TONG H<!P TP.HCM
. -\
>("'J IILI .
1
"'r'~liIC,I:
!',I r. . I".r., ~ I.:.,: ,'.i
i ""'.~ ~ y 1. ~,i'.K' It' ~
Md DAU i .~ b ~ ~;; i~'.;~ (
r-~' " -
Trong phu'dngpilar ph~n ta hii'uh~n ta phai Ihlfc h~~ncae huck sau - v~
Lhlfehi~nd u~nggiclilicIt: L ~ J
. du'a hili luein v6 d~ng yc'u (d~ng hic'n pilau)
. lhie'tl~p cae M lhue roi r~e hoa mi~n xac dinh eua bai loan,
. tich phan tren cac mi~n con (phh La),
. thie'll~p cae ma lr~n de>cung, ma tr~n khcSi1u'<;1ngcho ph~n la
Toi day la .mOico lh6 l~p lrlnh cho may linh lhlfe hi~n. Thlfe ra, may
tfnh ehll1\m ding vie;e lifp ghcp cae ma Ir~n ph~n \l'tv;) gi;li h(- pillidng
Lrlnh d~1i s6 llly6'n tfnh KX=F hay he; phll\1ng L!'lnh vi ph;ln
M X+ ex+ KX =F. Cong vi~e Hnh loan chufi'n hi cho I~p lrlnh (1('jih(>i
di'Lnhi~u Lhtfigian va eong sue. Thl}'nhung,khi sO'd~lngehudngIduh
Hnh loan nay, ta l~i bi gidi h~n rdt nhi~u VI:u~ng phfin La.u,~ngham
xflp xi, cae di611kie;n lien l\,le, klul vi dc'n dip k nao d(i . . . Jii dlt~1cm;}c
djnh san lro~g chu'dng lrlnh,
Vi<;e ung u\,lng £)~i s0 m;ty Hnh (Compuler Algehra) hay Hnh Loan hlnh
lhue (Symbolic Compulalion) sc giup chung la giiH quyc'1 cae khlS khan
lren.
Liinh vlfe E)~i s0 m,iy llnh khac vdi nhii'ng ehu'dng ldnh hi~n hii'll dti~1e
hlnh lhanh lren ncSnLang Hnh loan s0. Nhii'ng M lh6ng d~i sO'may Hnh
co lh6 thao lac lren nhii'ng d6i lu<;1ngloan hQe hlnh thuc hen e~nh nhii'ng
phep tinh'tren d~i lu<;1ngsO'hQe, Th~t v~y, vi Ilguyell tdc, bitt ky toall tii
toall h{IC 1l{1OClI ca,l trllC a(1i st{ crill!: ClI tld t/r(t'e I';fll (111{/etrell /rf d<,;
sfI may tillh.
M(lc dich cda 11Iq.1lall Ilay la Ilghiell cli'll cae gidi thuq.1 eda D(1i
,'iflmay lillh, ktt IU/p voi gidi thuij.t s{;'truyill tho"g Ilhdm xtiy dlfllg mQI
hf c/llidllg trillh t{llh toall hlllh tlllt'c gidi cac bai loall cd h{lc.
Cling dn n6i them Iii I~p lrlnh llnh lmin hlnh lhue khong e6 nghia Iii
phil nMn Hnh luetn s6. Hflll hc't cae lru'ong h~jp, tinh luein s01a gicli pluip
duy nhi\t di de'n Wi giiii eu6i cling. Vi~c tlm du'<;1enghi~m giai lich chinh
xae cUa me>tbai loan ed la ri\l hic'm.
Kef quit cda luij.II all La dii xtiy dlfllg qua trillh lillh toall cac ma Irij.II
pha'lI lit cila pIUMII!:pllap pJlli.Il I,t Ju1uh(lll d't'(n d(1llg cae toall t,~ d(1i
so: qua do, dii ell Ihi Iq.ptrillh tillh loall IIlllh tlui'c, Lam cd si'Jtie" lai
2
ml)t moi tn/dllg tif dl)lIg /rOlllljp trill/r (allto-codillg). Nc'u xiiy dt!ng giao
tiC'pt6t, cae cbudng trlnb Hnh lmln hlnb thue sc kc'l hl.lpvdi ehu(lng tdnh
tinh loan s6 truyen th6ng (Fortran) l~p thanb h~ chudng trinh tinh loan
mQtldp cac bai loan.
CHt!ONG 1
MOT SO KY HItU, DJNH NGHIA VA CAC KHAI NItM CO BAN
Chudng nay trlnh bay de ky hi~u t()(lnh{JC.Hldl,ln/{tron/{luc;invan, cac
dinh n/{hfa,cac c()n/{thue bie'n ddi tEch1'1/(1/1va cac djnh Iy c(1biin cua
gidi tEchham, d~c bi<$tkhai ni<$mv~ d~l1lgye'u (d~ng bic'n phan) cua bai
loan bien va cac xffp xi lam cd sa clIo pht/(Ing phdp pl/(1ntii hilu h~m.
Cae djnh ly v6 .qtl/(}i tl,l,t(1nt~linghi~m va cac ddnh /{id sai sf} cling
duQc nh~c l~i. Nh~m ung d1,lngphuong pIlar ph§n tu huu h1:J,ntrong cac
bai loan bien cua cd h<;>c,Ben cac khai ni~m cd hiln Clla If thuyet dcln
'/(1;,dllll '/(1; nl/(Jt cling duQc d<3c~ p.
Ngoai fa, cae eau true de;; sf) I~m cd sa clIo cac t[nh todn hinh thue
(symbolic computation) cling dul.1Cnhf{e I~Ii nhltm la111S,\ng It>
y luting
Hnhloan d~i so tlOngHnhloan hlnh LInk.
CHUaNG 2
TONG QUAN VE CAC TiNH TOAN HINH THUC
Chudng nay lrlnh bay t6ng quaIl, vai lro va dc khai ni(;m cd sa eua Hnh
loan hlnh thuc trong vi~c giai hili to<lncd h<;>cnoi chung va trong phuong
pIlar ph§n tu hall h~n noi ricng. Sd d6 clIo vi9c giai mOtbili loan cd h<;>c
co th€ di~n ta nhu sd d6 sau (xem trang 3):
Cac vffnde nhu v~y phai duQc tic'n hanh trudc khi I~p trlnh lren may
Hnh,do v~y khi xu dl;lngmOtchudng trlnh tinh lO<lnnao do, nguoi ta pbl;l
thuQcvao Lhuvi<$nki€u ph§n tu da dinh sKucua ehudng trinh, khong
ehu dQngduQe v6 d~ng ph~n tu cIlia, d~ng ham xffpxi, va dc yell du
rieng clla Lungbai loan (tinh lien t1,lC,kha vi den cffpk nao do ), cac
tich pMn dftu Vi v~y, ta thu(lng phiii thic't I~p l<,licae tinh loan v<3mo
hlnh, xay dt!ng It~ide h9 thue phftn lii'va I~p lrlnh It.li,till v~y, h9 llnh
loan mdi vftnIwnchc'd cdcd~l1lgdii X(IYdlfng,va di nhiennguoita
khong th€ dua vao thu vi<$ntinh to<\ntfftd de d<,lngxffpxi, tfftca cac
d1:J,ngph§n tIT, VIs6 luQngdo la vo h<,ln. .
3
Pho, \7"",,$"'Qn
tU'd~
, '
lap",p ,""g;i!; .<I'h.
"'."ngtlnh [\SIT
~t~~1.:.~. PTVP
Chudng nay dIng nhtln m1.lnh vi~c quay tnf l~li ede khdi nif-111hall allu
eita elf h(JCkhi Hnh loan hlnh thuc, chAng h1.lnvi~c sii dl,lng nguyen 19
eong khcldT trang hiti lOcin h(: nhi0u v~t 111;1.J.Willenhurg (1;11;1111:
~ [ ,,; [ m,;~ - i;) , ",;', [ J, ,;,- Ai:)] - 0
Voi cae bai loan Cd h()c stYdl,lng phu<lng phap phftn Ill' hull h1.ln,chung
toi t<;\mphilo chia thilnh hai dOi tu\lng :
II. Cac hili WclllxuJ't phcll tiYplllf<lngIrluh vi philn:
L(u)+ j;: =0 tren mien V
Voi :('
(
II
)
=
/
' , Iren bien 8
"
va ('
(
11
)
=-::
f
' , Iren bien 8
',. , ,. " , " I
dc;tOgbie'nphiln: W(u)= flfl[L(u)+}; ]dV=O trongdu VIj/ thuOcm(H
,.
khong gian ham xac dinh nilo d6, vii cae dieu ki(:n biellnhu Iren
4
2/.Cac bi\i loan dl,i'a lrcn m(H nguycn 19 bie'n pMn cua cd hQc,
chAngh~n lrong cac bi\i loan cd V~lrAn: gO (u) = 0 '
vdi: D(Il)=! JCi/k/l'ij(II)l'k/(II)dV- JIll; dV - JF;II;dS
2" r ,l"
MQl b~li loan bien lrong cd 11gesau khi dua v~ d~ng bie'n phan ho~e da: d
df;lng cae nguyen Iy bic'n phiin lrong Cll hQe (Lagrange, Casliano,
Reisne-Henliger, ) (l~m ehua xel dC"nslf l<SnIf;liduy nha't nghi~m lrong
cae khong gian ham), va vdi cae xffp xi phftn ltl huu ~f;lnta dU<;1edi de'n
mo hlnh eua phudng phap phftn ttl huu Iwn di~n la b~ng M phudng trlnh
vi pMn :
Truong h<;1pbai loan bien tuye'n Hnh : /If :\'+ ex+ K X =F
Truong h<;1pbili loan bien phi tuyC'n : /If
i + (' ,¥+ K.Y + G(X. X) =F
.
trong d6 G(X,X) lit mQtham phi tuyC"n.Trong e<lhai lruong h<;1p:
'1=~T' T'
K=~T'kT' (
:=~T' ( 'T va F=f-T'FT
J'L ,I/!" Lo L " L "."
1 1 ,.1 ".1
Trong d6, Te ehi lit ma tr~n dinh vi. Hip rap ma tr~n phftll ttl vao ma tr~n
tdng th~. Cae ma tr~n me ' k,. , Ce ' Fe ph", thuQe vao d~ng bie'n phan,
vao cd sa cua da thli'c xKp xi, s6 nut va tinh chKl ph~n ta (Lagrange,
Hermite C I , C 2 , ) .
Trollg lufj.Il all da 1fj./1trilllt trollg Maple de'tilllt toall Itilllt tltue elto eae
plll/dllg trilllt vi /1llt111va cae d{lIlg bie'll pltl1l1, tl(dllg ILligfa cae lira trfj.1I
m keF d trell, tllllllg li'llg Vln cae kiill pllall tit tilY j 1, 2, Itoiic
e' e' e' e .
3 cltid", dcplg Lagrallge, Hermite C J, C 2, sf;'mit IllYj,
Vdi luu y r~ng: la't cii.cae linh lmin dn thiC'l: dua v~ d<~ngyC'u,xa'p xi
biC"nphan, eae tich phan, cae ma tr~n hiC'nd6i , d6u e6 lh~ liC"nhilnh
tren n:uiyd d~ng giai Heh. Chi dn ehQn IlIa trude da lhue cd sd eua xa'p
xi , va VIcae tinh loan - du la d,~nggi,li rich- du,1elie'nhilnhireDmay
Den e6 th~ ehQn IlIa cae da lhue h~e eao. Ngoili ra cac lieu chugn baa
dam tinh CI , c2
ciia xa'p xi cling e6 th~ du<;1eki~m chung d~ dang.
Cae ma tr~n ph§n ltl d~u du<;1exac djnh ireD may d d~ng bi~u thue lrude
khi ehuy~n d6i (tlf dQng) qua eae ngon ngu s6 truy~n th6ng. M",e dich
eu6i eung eua bai loan vfin la cae kC"tqua s6, vi~e I~p tdnh tinh loan
hlnh thue nh~m xay dlfng la't cii cae bi6u lhue giai lieh trung gian, vdi
5
ham xa'p xi va d<;lngphfin tli kha tiiy y ( 20, 32 nut ), tie'n de'n tt,i
di)ng boa xfiy d1,fngcae ehudng trlnh can. Cae ky thu~t Hip nip ma tr~n,
giai cae M phu'dng tr1nh d<;lis6 v~n lien hanh t~cae ngon ngu s6 truy~n
th6ng.
CHUONG 3
MQT HIE U DIEN CUA PHUONG PHAP I)HAN TD HUU H~N
CHO TiNH ToAN HINH THUC
Chuong nay xfiy thIng m(Hbi~u oi6n kluic eua phuong pluip ph~n tll hITu
h<;lnphii h<;1peho Hnh loan hlnh thue tren may Hnh.
3.1 PHUONG PHAP PHAN TO HUU H~N TONG QUAT
Xct m<)ibi) ba (K,P,L) trong do cae m6i lhanh phjn K, P vaL co cae th~
hi~n va quaDh~ nhu sau:
KIa mQtt~p con compact thuQc R", khae r6ng co bien lien t\,leLipschitz,
P la thong gian vector huu h<;ln(m) ehi~u , g6m cae ham xae dinh IreD
K, co gia tri tht,ie.T~p h<;1pL = {oi},i= I, ,m,eua cae di(~m G;E KIa P-
duy nhflt giai ne'u: '\fa; E R,i = I, ,m , 3!p E P sao eho
p(a;)~a;,'\fi = 1, ,111.Ph~n tll hITulu~n li'I IIl~Ji00 oa(K.P.~) sao eho
P-duy nha't giiii. Ham P; E PIa ham cd sd eua philo ta huu h<;ln,xae
dinh bhg : Pi (OJ)= OJ;' 1:$ i,.i:$ III
3.2 L!P TRiNH TINH TOANHINH THDc
M\,Iclieu la I~p tr)nh Hnh loan h1nh thlie clIOc:ic pllli<fng Ir1nh vi phfin va
cae o~ ng oie'n pIta n. IUt1ngung lit cae ma tr~n 111,.,k". C", F" (el11ow)'e /III)
ta cae 111atr(in nay cua cae pluin tu lulu "<In)
Vie't l<;li nguyen 19 eong kha oj theo d<,\ng ma tr~n
f£'TdV = fulf/ldV + fu"f'dS
" " ,\"
Trang d6: & la bie'n o<;lngkh:l oj ung vOiehuy~n vi kId 01U
X:I'pxi v~t Ih0 h~ng de phan 1ftr<'1in,le, hlfll 11<,ln.lien kel qua c;\c di0m
nut. Chuy0n vi trong h~ din phlt<1ngcua lIli'jiphfin ta dude gi:"iIhi61 IiI
m(Jtham eiia ehlly6n vi N nut ciia loan h/;. nghIa la. v(1iph;in lit Illia c6:
(11"'1(.1'.,1'.::)= N("'I(X.,v.::)(I
trong d6: N(III) la ma tr~n ni)i suy (hay ham xa'p xl),
ehuy~n vi loan M
u la vector
(j
H~ e6 N di€m nutthll6ng qual U co 6N lhflnh phdn :
U'=(U1V1"~U1'P1'I'1 UNVNWNUN'PN'I'N)
Ta e6th€ vie't: ell/l)(x,y,Z) = DII(I/I)(x,y,=)= DN11/I)(x,y,z)U
Trang d6 D la ma lr~n eae loan lu d~o ham. Yie'll~i nguyen Iy eong khii
di vdi ky hi~u: R =U'[ IJN(I/I"f'I/l'/IdV'I/I) + IlNII/II'f(I/I)'dSII/I']
Ta co: [:LJU/ N,m,'/J'c1m'DN1mludVlm,]= R
T~ day ta tha'yr~ng xay d1!ngcae xa'p xi eua u tren cae ph~n tu, nghia la
xay d1!ngma lr~nnOisuyN , tily lhu(>cvao each chQncd s(1cua xflp xi:
u(x,y,z)=(N1(x,y,z)N2(x,y,z) Nm(x,y,Z)XIl, 112 lImY
=N(x,y,z)(llm)
Plll/dllg pluip xap xi bdllg plutll tit Illl11lu;l1lla phudng pIlar xa'p xi nut
tren cae mi~n eon, nhung dn dap ung eae yeu du sau :
. Xa'p xi nullren m6i mi~n con yc co stf lham gia cua cae biC'nnul
tudng ung voi cae di€m nullren yc va, e6 lh€, ca lren bien eua yc
. Ham xa'p xi uC(x) lren m6i mi6n con yc du(je xay d1!ngla lien t\,le
tren yc va thoa man cae dieu ki~n lien t\,legiii'a cae mien eon khae
nhau.
Nhu' v~y vi~e xap xi bd"g plitt" Iii IlllllluJ.l' sc d(it ra hai Va-IIdt! :
. Dinh dS}.nghinh hQc cua cac pIlau to' cIlia .
. XAydtfng cac ham nQi sur N; (x) tu'dng dng tren m6i phdn to'.
Chu v: Cae dii11l 11(J;,fUy klu)ng I1I/(ttthilt chlla diim mit hll1h 11{)e,ma
can C()thi cd cae diim bell trol1g 17'1£111tt~.
Tuy nhien, xAy dtfng cac xa'p xi tren cae pIlau to' thtfe, thi ma tr~n
nQisur N se phI) thuQc vao tQa dQcae di~m nut cua phftn to', nghia la
phl! tIllIQCvao d{lllg hlllh h{)c, va cIlllllg kluic llhall vai miJi plUtll tit.
Ne'u xa'p xi lren du(je lh1!ehi~n lren cae phall tii Iham chie'" sao eho ma
tr~n ham N fa dl)c lijp vai d{lllg hlllh hvc c,;aplUtll Iii Ih~lc,thi cae ham
nay co lh€ xu d\,lngeho mQiphfintu e6 ph5n lu tham ehie'ugi6ng nhau
(Cae ph~n lu lh1!ese e6 clIngphfinlu tham chie'ukhi chung gi6ng nhau
v~: [o(ti hinl1 d(l11g, s(j' nut IIll1h h()c )1([,W;' l1ut 11(J;suy). Sau d6 la xay
d1!ng phep bic'n d6i tu(ing dU(ing (hinh hQc) giii'a ph~n tu lh1!c va ph~n tu
7
tham ehie'u. GQiphep bie'n d6i hlnh hQe giua ph~n tu tht1cva phfin tu
tham ehie'u la:
r:f ~ x(f) = N(f)(xm) trong do: ~=(~,17,(), x=(x,y,z)
Yi~c tinh loan ham xa'p XlN du'<;1etie'n hanh blnh thu'ong nhu' cae xa'p Xl
phfin tu hUll h<;1nquell thuQe vdi cae tQa dQ nut ~ eua phfln tu tham
ehi6u H\ua niC't, qua cae nu'de :
. C/u!n da thlic ("(1,Wlcua xap xl :
.
TEnhma trrJnnut
P(~)=(PI P2 Pm)
1'"=(PI(~»),i,j= I, ,m
. Tinh N(~) theoc(jngthlic : N(?)=/'(?)I',,-I
Phep bie'n d6i hlnh hQe tren eho phep ta ehuy~n cae Lichphan eua mOt
ham f tren ph~n tii'th\fc thanh tich phan don ghln bon, tren mQLph~n tii'
tham ehie'u. -
3.3 XAI»xi TRftN PIIAN 'I'D TIIAM Cillfiu
Nh~m lam don gicln cae tinh loan d~c tru'ng cua mQt ph~n tu co d<;1ng
phue t<;1p,ta ~u'a vao khai ni~m v8 ph~n' Lii'tham chie'u quell LhuOc:
phh tu tham ehie'u yr la mQt ph~n tu co d<;1ngra't don gicln, d~t Lrong .
mQth~ tham ehie'u , c6 Lh6hic'n d6i LhanhmM phfin tu OWeyc qua m0t
phep bie'n d6i hlnh hQc r" .
Phep bie'nd6i r e bie'nd6i mQtdi~m co tQadQ ~ eua phh tu tham
ehie'u thanh mQtdi~m eua ph~n tu th\fe co LQadQ x:
r" : ~ ~ x' = x"a)
Phep bie'n d6i "e nhu' v~y, phl,lthuQevao d~ng va vi tri CUBphfin ttl
thlle, nghia la vao tQadQeua cae di~mnut hlnhhQe. Nhu'v~y, vdi m6i
P
hh tii'thu'c thl' . . ): '" -" =
(
):- - -
)
. . r . " -r X X ",XpX"Xk""
trong do XI' xi ' Xk , la tQa dQ eua cae nut hlnh hQc cua ph~n tii'
Lht1c yo .
D~ dap ung cae yell du tren, mQt phep bie'n d6i hlnh hQc "e t6ng
quat phclithoa man ba di8u sau day:
i. La mQtsong 3nh tit ph~n tu tham ehie'u vao ph~n tii'th\fe.
ii. Cac di<!mmH hlnh IH)Cciia phfin (l?(rham chic'lI hMng l~ng
vdi cae di<!mnut hlnh hc)cciia ph~1ILllLht1c.
8
Hi. Bao toRn vi tr{ cac bi~n: bien cua phdn lU'lham chic'u xac
djnh bdi eae diegmnul hlnh h9C,se lu'dng dng vdi bien ciia phh Lt!'lht!e
xac djnh bdi cac diegmnul hlnh h9Clu'dngdng qua r (,.
Begddn gian ky hi~u, Labo qua chi s61ren e d~e lru'ngcho ph~n Lt!'.
Phep bie'n d6i hlnh hge giifa ph~n It!'lham ehic'u va ph§n It!'lht!c ma La
st!'dl,lng11\mQt phep bie'n d6i tuye'n tinh, ph thuQc cac tQa dQ hlnh
hQc(x )cua cac di~m nut cua philn hi tht/c Vc.
Nhll I'QY ta C() thi xiiy d1!lIg C£lC11£111111; cita plu!p billl ddi hillh h{JCtheo
euIIg 17l{Jte£lch tlllle nhll x£iy d1!ng c£le 11£1111nOi suy Ni (~), I'a lllu yrling
ham N (C; ) lil d(jc lq.p vui d(l1lg hillh h{Jc cLiaphall tLi:tlll.jC V. Do vQY
eae ham nay C()thi xii'dl:lngclIO /1/{Jiplul11Iii'C(}pluln Iii' thWll ehilu diJe
tn(llg qua: Hinh d(lIIg , ,ffJ'mit hillh h{Jc, S(J'nut n{Ji .wy :
Xa'p xi lren ph~n It!' lham ehie'u :
uex(~) = u(~) = U; = (NI(~)N2(~) NII, (?;)XUI U2" . u"J1'
-
{
o khi i oF j
Nj(l;;)=
I
kl
" " .
11 1= J
Xa'p xi lren ph~n It!'lham ehie'u ph~lid~lmbao Hnhlien ll,lelren phh It!',
va Hnh lien ll,legiifa de phdn It!'
Ta s~ biegudi~n II(~) lrcn ph~n It!'lh~\lnehic'u du'di d~ng mOll6 h~p .
luye'n Hnh eua eae ham s6 dOe I~p dii ch9n lru'de PI(;f) ,P2(;f), ,
lhOng lhu'Clngnha'll1\ eae d(/n tlulC dOc I~p. Vi~e eh<;>nIt!a de ham p;(;f)
la mOLva'n d~ ed ban eua phu'dng pMp phftn HIhifu h<.tn:
u(:[) = (PI(:[)P2 (:[) Pml (:[)XOI 02" .a"d Y = P(:[)(a,,)
T~p h~p de ham lrang I'(;f) L<.t°Den cd .'111cLia xap xi . SII sInu;l1lg ciia
110phdi blillg .'IIIbif/" mit hay .'IIIbq.c t{t dO"d trIa phih, tit .
Tom tift cac blluc xiiy d{tllg ham (11latrq.1lhillll) N(~):
» Ch{JIlda tl"ie C(f,ffl I' (;f )
» Tinh17latrQnnut Pn=(Pj(';») ,i,j=I, ,nJ
» Ngh;ch ddo ma trQII nut p"
» Tinh N(:[) theocvngthue N('t)=P('t)Pn-1
Lrangd6 :
\J
3.4 PHEP BIEN DOl CAC TOAN 'l'(J DA.O HAM vA TicH PHAN
Trang cae bai loan Cd hQe, V~t Iy ,dn phai tlm cae ham ehua bi€t un
va cae d~o ham eua no ai" alex, tren mOtmi~n xae djnh nao do.
a ' cy ,
N€u dung cae xa'p xi tren eae ph~n tii'tham chi€u tIll
Tat cd cac bie"lltIllfC lien qllall de'n II va cac d(lo Illim ctla II dlfi VtJix,
y, z, se dll{ICddi thll1lh d(lo ham theo .;, 1] va (, tIllIng qua ma trQ"
Jacobi (J) clla phep bie" diJi.
B!€n d6i eae d;o. ?a~ ~~e nha't. Sii' dl,lllg eae eong thlie d~o ham eua
ham h<;lp, ta eo . ~a~)- J(a J
Trong d!,\ng d!,\i86, J la tkh eua hai m8 tr~l1: giUa ma tr~n cac O!,lOham
cua eae ham bie'n 06i hlnh hQc theo cae biGn ~, 11, va <;, va ma tr~n
cac tQa dO cua ne nul hlnh hQc cua ph~n Iii'.
J=
(
~ ~ ~
)
7(XYZ)=
[
;:
]
((XI1XYI1XZJ)
o~ 017 o~ -
Nc
Voi o~o ham eflp cao: Cae ph6p biGn 00i <.1<.10ham cflp ( i ) co Ihd linh
theo d~o ham d"p (i-i) lheo phep qui h6i.
Cu6i cung, ta chuy~n lich philo cua mOt ham f tren ph~n tii' lhl!c ve
thanh mQt lfch philn lrcn ph~n tii' lham chie'u vr bAng cong Ihlie quell
thuoc :
ff(x)/ (x)/'(x), dxdydz = f f(x(~) )/(x(~) )(("(~) ),.ldcl(.J)ld~d!!£It;
1" 1"
voi J la ma lr~nJacobicua phcp bie'no6i
Ngoai ra chudng nay con oua ra mOLsCSofnh nghla cua chuii'ncua sai sCS,
nh~m sii'dt;lllgcae Hnheha't eua ham xa'p xi dS ti€n hanh Hnhloan hlnh
lhlie eho cae sai s6 nay lren may linh.
CHUaNG 4
L~P TRINH TINH TOAN HINH THDC CHO BAI TOAN CO HQC.
CluJ'cJngnay Irlnh bay de ed sa eua cae tinh loan hlnh lhlic (symbolic)
tren may Hnh,dl!a tren n~n tang eua cae tinh loan hlnh thlie tren eac da
thue. Cae khai ni<$mdin ban eua cae ca'uIrue o!,lis6 oil ou~1e06 c~r
nh~m d~n dAtde'n cae linh loan phuc I~p h<.1neho cae ma lr~n. cae loan
tii' d~o ham, Heh philo, bi€n d6i Laplace,
10
Vi~c I~p trlnh Hnh loan hlnh thuc cho phlidng phap ph~n tii' hUll h~n, chu
ye'u t~p lrung vao vii;c dlia biLitoe", biell vi d(l1lg bitll p"lill (d~ng ye'u)
ho~c sii'dl,lng cac nguyen Iy bie'n phfin (Lagrange chdng h~n) va till"
toe", d(l1lggidi tic" cae 11latrQ-llp"OIl tll (ma lr~n cung, ma tr~n can
ho~c ma tr~n khoi Ili<;1ng)sau khi xa'p xi ph~n tu hUll h~n .
Sd d5 qua trlnh nay the hi~n nhli sd d6 phia sau :
SO DO LAP TRINH TfNH ToAN HINH THUC CHO PP.PTHH
. ,
Bil i tm! n cd hQc
Lll =f
Nguyen 1:9
com! khii di
ChQn philo tl't- xac t1inh philo tl'fthalli chiC'lI
Xac djnh ham lien tI,IcdC'n dip mil'y'!
ChQn da thuc xa p xi p(:f)
Tinh ma tnJn nut:
Pn=(Pi(~») ,i,j= 1, ,11"
Nghjch dao ma tr~n nul p"
Tinh N(~) the a cong thuc N('t) = P('t) p,,'1
.
Tinh loan xftyd~rngilia tr~n ham: N(~)va
N(~)
Thie't I~p ma tr~n Jacobi ciia phep bie'nd6i,
I~p ma tr~n ]"1,tinh dct(J).
Nguyen 1:9
bie'n phan,
v6 dang ve'u
IWi r~c mien
xac t1jnh-
philo tl't hull
h:,\11
Xap xi tren
philo tl't thalli
chiC'lI
Tinh ma tr~n
philo tl't
II
Chuyen cae Hehphilo eua f tren phftn ta th1,fe
thiinh Hehphilo tren mQtphftn ta tham ehie'u
ddn giiin hdn :
K(m) = Jf(x)dxdydz = Jf(x(~)~et(J)d~d17d(
v"" v'
Tinh Heh phfin ilia tr~n
K(m) = Jf(x(~»)Id~t(J)ld~d1]d~
v'
In J<.<m!ra file CJ clan
N6i ke't vOi cae ehu'dng tr'lnh con kh:lc: nh~p s6
liell. IllIh ilia IrQII KillIheo s{) liC;lIlIh~l'. 1:11'nip
ma lr~n loanel;1e-,glMI!~ KU=F
In ma tr~n U (U Iii loi giiii sO'eua ke'tqua din
tlm)
Chu'dng nily cling d6 c~p d6n ghli thu~t hlnh thuc cho phu'dng plulp phitn
Iii'hull h<.1nugh nhicn d~ giai cae bili to:ln bien co ehua dc tham 86
hay qua trlnh ngau nhicn, trong do viOc xflp xi c~tc da thuc X~ICc.1inh
tu'dng ung nhu' trang ph§n Iii' hull h<.1nxae c.1inhc.1u'<;1ethay bang cae da
thue chaos thong qua khai tri6n Karhuncn-Locvcn, cae c.1alhue nily
trang tru'ong h<;1pt6ng quat co th~ lien hanh tu'dng It! nhu' giiii thu~t
Gram-Smith, da thuc chaos clip n co d<.1ng:
(
0 ,
(
"
)
2)-1)' I n~'1 fI~"
rpk ""'~I)= ,." n(I", J,P'I
.
/.,11
I , ~(-Ir-I"
fg / n ~I
)
I'(Ji11Ie
L L . \,-,.,1 I
"-I< .(1,., '.) I. I
trang do n-(.) Iii phep hoan vi (nghia Iii t6ng thlfe hi~n ln~n cae phep
hmin vD, cae d<.1nge\l th~ se du'<;1ctrlnh bay trong ehu'dng sau,
wti11cluJn
CHUdNG 5
Chttdng nay ling dl;lOgUnh loan hIGh thlic vilo mOt s6 bili loan phlic t<;\p
trong cd h<;>c:
-B~u lien la hili loan Unh ma tr~n phh t\1cua bili loan khuyC'chtan khi
thiU 3 chi~u. Trong phh phI) Il)c co trlnh bay vil httang dfin cach thlic
kC'th<;1pcac ma tr~n ph~n tli' nily vito mOt chtfdng trlnh t1nhloan b~ng
ngon ngu Fortran.
-TiC'ptheo lil gidi thil$uphttdng phap ph~n tli'huu h<;\ngiai mOt bai loan
diln Ghatddng nhil$t,dhg httang.
-Bili loan 3 lil ling dl)ng da thlic h6n lo<;\n(chaos) vilo phttdng phap ph~n
t\1huu h<;\nng§u nhien giai bili loan khuyC'chtan khi thai theo mo hIGh
ugh nhien va bili loan v~t lil$uco dOcling philo b6 ugh nhien.
Bai toaD 1: Tinh toaD hlnh thuc cho bai toaD bj(~nkhuy~ch tan khf
thai theo mOhlnh ba chi~u.
Bili loan bien truy~n vil khuC'chtan khi thai:
TImIpEC2(Q) thoa:
Orp+uorp +vOrp +wOrp +arn-J1
(
o2rp +02rp
)
-VO2<p =1
'a a 0' a 't' a2 0'2 a:2
* Bi~ukil$nbien: <p= 0 tren f x (O,T)
o<p= pcp tren fo x (O,T) ; olp = 0 ireD fh x (O,T)
Oz Oz
* Bi~u kil$n d~u : lp(O) = lpo trong Q
Btta v~ d<;\ngbiC'n philn, foi r<;\cmi~n xac dinh vil xa'p xl ireD m6i ph~n
tli' ta di thu dtt<;1chl$phttdng trlnh d<;\is6 xac dinh cac gia tri <pt<;\icac
di€mnut: M<iH-K<P=F
Khi Unh loan tren may, ta chuy€n d6i cho cac ph~n t\1thalli chiC'u Qr
(tttdng ling vai ph~n t\1 th\fc). NC'u cac ph~n t\1th\fc lil phh t\1kh6i sau
m~t, ph~n t\1thalli chiC'u co d<;\ng:
Ch<;>ncd sa Xa'Pxi : P =(1 ; 11
~ ;11 11~ ;~ ;11~)
G<;>iJ lil ma tr~n Jacobi cua phep
bie'n d6i nily
D~t :
12
trong Q x (O,T)
Q=r'
13
HI" =((:) (~) (~)r; H{ =((~~)(~) (:)f
va v = ((u,,) (VII) (w,,))
Khi d6 ta c6 .:
111,.= jN'Nldct(J)ldO, 'k" = fN'NVQlJ{ldct(.J)lclH,
n, ",
k'2 =()" IN'Nldetl(J)dO, 'k., +k., = JB/Q'DQB~ldet(J)ldO,
0, 0,
d
'
(
I' 0
Iron 0:
k,.,= vfJIN'N.J,dl;d77' g f) = () II
I", 0 0
I
[
)
'
(
)
'
l
)
'
.J - Oy~- ~ Oy + 13z 13x- 13x!! + 13x~- Oy13x
0 131; m, 131; m7 131; m7 131; ml 131; 13'1 131; m,
Tinh cac ma tr~n tich philo nay ta thu du<;1ccae bieu thuc eua de ma
tr~n M, K. va F. Xua't ke't qua d~ng file ,ngon ngu Fortran, ke't h<;1pvoi
cac chudng trlnh con khac de Hnh lOan.
Xet m,ohlnh 1000 nut:
Ngu6n t~i nut 455, trong m~t ph~ng 491-500. Ke't qua Hnh loan la philn
hC;n~ng dO khi thll i tl~i CI\c fiti t.
M6 h1nh trnh bel toan khuyech tan khf 1000 nut
fj
"
~
,I
40
~]
. "."n
. ",on
. """
. ~
. .n"
. """
. ""H
. "nn
. ".",
.
. u"
. " ~
. mHO
. "."
: ::::::
. "
. ""
. "."
. "o~.
. ,
. """
. .n
.
. "n
/~
.
-
.
~~
.
'
.
~'
.
'
.
'
.
'
.
"
~~~~~
Bi€u d6 d~ng tr~ke't qua tn~n m~t
401-500 - Gi6 =0
C6 nhi~uke'tquadii tlm ouQC,trong t6m t~t chI giOithil;u vai k0t qUIt
dieD hlnh.
"
1
)
-§
I
9
30 !'D 70
100
lmx9=9m
.~
.~
.~
.~
.~
.~
.~
.~
.~
.~
.~
.~
.~
.~
-~
-~
.~
.~
-~
.~
-~
.~
.0-
.M-
.~
.0-
14
Bi~u d6 dang Ir!k6t qua Iren m~t 401-500
MQtngu6n (+) I~i nut 455
V~n 15cgi6 :.::D.2m/s.Hltdnggi6: ~
M6 hinh tinh bdl to6n khuy{1ch
t6n khf 3600 nut
30
)-
el
~I
'Oi
Ei
,
;,
1m,29 .29m
Bi~u d6 ding tri ke't qua IreDmi,it1201-1800 - ngu6n du'akhi vao m6i tru'ongt~i
cae nUt: 1425-1427-1485-1487. So d6 tinh 30 x 20 x 6 =3600 nut
Nhan xct va ke't luan cho bai to<1nI:
Voi cac chudng trlnh linh loan hlnh Ihuc IreD may Hnh (l~p trlnh
Symbolic) co th~ cho phep ghli cac bai loan rill phuc t<,\p,cac di~u ki~n
yell du cao (CI , C 2 ) va vui dO chinh xac cao ma d do khong Ih~
chQn cac ph~n tii' ddn ghln duQC (vi d\l v~I li~u composite, cd hQc pha
huy ).
Tli'de thu vi~n chuyen d\lng (Packages) co th€ lie'n t\f dOngboa
l~p trlnh (t<,\oma ngu6n cho cac chudng trlnh giai so).
Ke't qua bili loan Ihay ddi Ihco de vi lrf ngu6n, v~n 16egio. V~
dinh Hnhnh~n Ihily hoiln loan h<;lply. Co Ih~ md rOngvi dl,llhanh mOl
th\fe nghi~m IreDmay Hnh.
5.2 Bai toan 2: Phudng phap phftn hi hii'u h~n giai bai toan bien
voi v~t Ii~u dan nhut
-diing huang -ddng nhi~t
15
5.2.1/ Nguyen 19tu'ongling-Bai tmin daD h6i ke't hop:
Thea nguyen ly luong ling, nghii;m cua hai loan hi0n dan nhdl
tuye'n Hnhco lh€ thu du<;1ctit nghi~m cua bai loan bien dan h6i, lrong do
cac hhg s6 dan h6i du<;1clhay bling cac loan Iii'ham ph", thuOclhai gian
(modun chung ling sua't ho~c ham chay cMm).
Qua bie'n d6i Laplace ta lhu du'<;1cbai loan dan h6i k61h<jp:
aO" if + Fi == 0 ; e,; == ~
(
au, + auJ
]
ox;
- 2 ax; ax;
- -
ai; =Cijk}EkJ ' trong do : CijAi==p' C'ikl
p: anh cua bie'n thai gian lh1fct qua ph6p bi6n d6i Laplace.
Cijk: la iinh ciia ~;kJ qua phep bie'n d6i Laplace.
Va bie'n d6i cac di~u ki~n bien:
- -
U
I
==
v
,
' ireD r; ; (J'.n -==T
,
X. E f
7
'
", "
Khi v
(t) == const la co lh€ tach bie'n nhu'sau:
(J, ~ (/,"(I",)/;'(t), 1';:- 1,;u(rJ/';"(t),
5.2.21Ap dung giai b~liloan Ulmchil'nhal. vat lieu dan nhdl bang
phuong phap giiii tich.(Ta'm chju tai pMn b6 d~u vuong goc m~t ph~ng
giil'ata'm)
Vie't l~i cac phlfdng Ir.nh cd han cua hai loan dan h6i clIo hai
((I,lnlfll11l11iinghlnh chii'IIh~1h~ d~y h chjnn6n Vt1iI~fcphlln h6 q(x.y):
' 1
J
- /
.«(::::::~
_
V-
-
-
-
-
"-:-
,1-"'-"-'
x.
/v
Nhao xet (Xem hloh) : Chuy€n dicit u' ,v' tl.lidi€m ireD Idp song song
va each m~t giil'a mOLkhm\lIg z , ll,i thili didm I - do s1futIli colig lfi'm
tl.lOra - co dl.lng :
82w
u'==-zsin(a(t)):::::: -ztg(a(t)) ==-z-
8x8t
16
a2w
v'= -zsin(a(l)) ~ -zlg(a(l)) =-z-
ayal
I OW Ow
Laplace(u) =-zp-, Laplace(v') =-zp-
OX oy
Ti:rnMn xet teen ke't h<;lpquaIl Mbie'n u<.1ng-ehuy~nvi cho La:
- 2- 2-
- 02 W - 0 W - 0 W
Ii =-z
p
-, Ii =-z
p
-, Ii =-z
p
-
rx OX2)J' oy2'.'. oxoy
Ti:rquaIl Mung sua't-bie'n di;\ng cho La:
(
- -
) (
2- 2-
)
- 2- 1 02W 02W. - 2- Iowa w
a =-
p
E-z -+v-' a ,=-p E-z -+v-
rx 1- V2 (k2 0'2 JJ 1- v2 0'2 (k2
- 2- 1
(
02;
)
rxy= -P E 1+ v Z oxOy
Giai bili loan diln h6i ke't h<;lpteen yoi mo hlnh bili loan ta'm (ung sua't
phAng suy rOng), y~n UI,l11gWi giai da co, ta tlm du'<;Icphu'ong trlnh
Sophie-Germain:
-
(
04; 04; 04;
)
- - ,. . - 2- I hJ
D
-+2-+- =Df: f: w=O, YOlo D=-p E
(k4 OX20'20'4 II l-v212
VOi pIll/dill! vllifv Navier- Trlidlll! IUfDo(x, v) =00. =COllst :
4q '
f
' h
f
' m1lX . 111ry 16q
qmn = 2 sll1-sll1-dxdy= L
ab 0 0 a b ,,2"111
- 16qo ~ ~ 1 . 11111X . I17ry
11'=-= ~ ~ 5In-5In-
1f6 D - -
(
2 2
)
2 a b
m-I,J,3 "-I,U, 111 11
/11/1 -+-
a2 b2
Ta chi dn tinh w khi m, n lil nhung s6le. Vol tai ngoili philn b6 o~u,
m~t giua khi u6n phai d6i xung, cae s6 h<.1ngm, n chii'lltuong ung yoi dO
yong khong d6i xung Hen chung phili b~ng khong.
Thea nguyen 19Luongung chung ta se thu du<;lcll1igiiii cua bili loan oiln
nhot ti:rWigiiii cua bili loan oiln h6i ke't h<;lpb~ng phep bie'n deSi
Laplace ngu'<;Ic.
w = Laplace-I(;)
17
1 . //I l1X . mcv
](
//I2~
)
2SII1-;-'Sll1h
//III +
a2 b2
[
16 '" '"
II'= l_aplace-I ~ " "
tr'O D -L L;
m.U.J ,,1,.1,
chti yding:
(
I
)
1
(
12(I-v2)
)
I
(
1
}
12(I-V2)
Laplace-I
= =Laplace- 2- J =Laplace- ;-= ~
D P Eh P F- h
Cu6i ding la co:
Vdi:
-I
(
I
J
WI =Laplace =
p2E
_
[
12(I_V2) 16q" ~ ~
IV" - , (, L, L,
h :r ",'1.'.' " ",.
W= WIW()
I . IIITTX. n:rv
,5\11 5\11 '-
(
1111 /11
)
II h
111/1 '1-
a2 b'
Giii sii'v~lli~u dltn nhdl mo tii nhu'sau:
v
=consl; E = Eo(l-~e+'} lhco loi gidi teen ta c6:
(
'I' /
)
trong d6: W = 2e 2" cosh !L-
'I 2
_
[
12(I-V2) 16q" ~ ~ 1 . 1Il11X . nny
IV,,- J 6 L, L 2 25111 5111-
E"h 71: m~I.Un~I.U
(
Ill /12
)
a b
1Il/1 02 + b2
W = W" W"" '
Nhan xet : WE:la [(Iigidi hai toall dall hili clJdie'll
W'1:zadOllggop cua tillh llhut vijt Ii?u vao [(Iigidi cuo, cIlIlg
5.2.3/ Giiii blti loan dltn-nhdt tuye'n Hnhbling pp. ph~n Iii'hii'llban:
Qua vi d\,lteen ta lha'y nghi~m tlm du'<;Icllt nghi~m cua blti loan ta'm
ph~ng. Trong th\fc Ie', so'cac blti loan cd hQc,co d~ng nghi~m giiii lich,
Iltra't it. Cach giiii teen khong nhii'ngkhong md rOngcho nhieu blti loan
mlt con khong th~ l~p tr'inh hlnh lhuc. d day chung toi xin giOi thi~u
IX
m9t phuong phap ghli kha t6ng quat cho nhi~u bai loan dan nhat, d~ng
huang, d~ng nhi~t b~ng cach I~p trlnh ph~n tU'hii'llh~n ke't h<;Jpnguyen
ly tuong ling,
Vie't I~i nguyen Iy cong ao cho bai loan dan h6i ke't h<;Jp,vai nela s6
ph~n tti'cua bid loan :
"
I F,U~eS;DICIDSeUoeu'ldV=
e=1v,
=f JU,/U:)eS;fvdV + t J~u ~eS;frdi
e=1 v" e=1 r,
D~t :
Re = DSe
Vo : la vector chuy~n vt loan h~ - la ma tr~n h~ng.
1;: Ma tr~n dtnh vt cua ph~n tU'e tren loan h~,
ta SHYra :
Tit do ta co:
UOe = T"Uo
" II, II, -' -
!F,V~T:Ri:'R.r.vou,/v = L fu,p~Te'S~J;,dV + L fu,P~Te'S:frdr
e=lv. e=I", e=lr,
NMn xetr~ng: uTJ' V~ co th<idua ra ngoai dffu tich phan va dffu t6ng vl
chung khong phI,!thu9c to~ 09 kh6ng gian, Ta khU'cac thanh ph~n tuong
ling 0 2 ve':
" ,,",
I Jr.'R;C'RJ:Uou,/dV = I fTe'S;j;,dV+ I JTe'S;frdi
e=1v, ('=1", e=1 r,
B\e'n 06i Laplace ngu<;Jcbi~u thlic nay, chu yr~ng chi co (;', u,/,fv,fr
11\chlia bie'n p:
(ky hi~u Laplace -I (f) la bie'n d6i laplace ngu<;Jcham cua hamf)
tT:[}R;(Lapla" -,(C''u" ))R.dV] T,,U"= ~ t' S;/,dV + ~ ,f T: S;fcdr
Ky hi~u :
Ke = JR;(Laplace-I (C' . U"))RedV 11\ma tr~n 09 cling ph~ntU'.
v.
19
K=~1'f.K .1" F=~
J
T')l
j
'dV+
~
I
r'S'
t
',/I'
L ,e " L ,,',V L "~,Ie
<=1 e=1 "0 e=1 ro
ta dj d611hi011
thuc sau: K .U0 =F
Ghli M phU'dng tdnh d~i tuye'n tren ta Om dU'Qc Uo Hi cac chuyen vi clan
h6i t~i cae nut. Do d6: nghil$mGan nhdt la :u (I) = U 0 . U" (t)
D~ Hm ham u1J(t) ta 100y de'n gia thie't Uola nghi~m dan hai, tit do
.my ra 10:11latrQIl K fJIld; 10:11latrQIl /zlillg dfil ya; t. f){iYchinh la ma tr~n
dQcung dan h6i. Dieu nay cho ta M thuc sau :
(Laplace-I(C' .uJ) pluli Iii ma tr~n hang 56 d6i v<3it, nghia Iii:
(C'.;-)=.:i trong d6 A : la ma Iran h~ng s6 d6i v<3ip, pia anh cua t
~ P .
qua bie'n d6i Laplace.
Xct mQt hili tO1\n ql
'"
the:
E(l)= Eo(1 + ~ e-t"')
,
t
,
.,
'
x" "
,
m """"
-, , - 1
""-,. "'::'<:Z: :\ ,""".
MO HINH <;IAI eAI TOAN T)I;M
"""",'v ,
~"'~""'-_'."~~KN","
'""." "'K""",
C la ma tr~n v~t li~u,
v =COlist. ta c(): C = (,ifjffli;;,G; Tlrtllly,la 11mdlrt.1elIill1lhiC:"
( "')
d~ng nhdt: W'I(t) = 1- ~e -J Va nghi~m cua bai loan Hi: u(t)= Un w"
Trang d6 Un la ke't qua cua h~ phU'dngtdllh K .U 0 = F , d6 la cae
chuyen vi do linh chat daB h6i v~t li~u vii Iii chuy6n vi t~i cac nut.
DO THI E(l) THEa THaI ClAN, wJi ede hf S()''7
E(1) =y x Eo
I: :
! :
TIHli giall t
B6 thi bie'n d~ng nhat W,/(t) .
1
-: ;; __d -
.:: '-
I
20
theo thai gian vii h~ s61']
'L=do Z
i
" I
,
.
Thui gian t
Du'ai day Iii bi~u d6 bi~u di€n st! thay d6i chuy~n vi cua Him theo thai
gian. Biii loan du'<;1ckhilo sat vai cae gi,i tri cua 1']=0.2, 0.5, 0.7, 1.0 ,
trang l6m l~t chi th~ hi~n tru'ong h<;1p1']=0.2
0 I4T QuA BAI ToAN: TfNH BIEN DA.NGTAM, VAT LI~U DAN NHOT
BANG PHUONG PHAp PTHH
D. Ihl<"", ,,, lheo Iholglo. ,
g." ,
NUl
",." '
. .""."
.
I::::::
"",
1;=fO
I
I . -
MAT CAT GIGA TAM QUA cAc NUT 31-40. H~ s6 nhal eta =:=0:2 0
5.2.4/ Nhan xet vii ke't luau cua biii loan 2:
Phu'dngphap ph~n Iii'hO'uh~n eho bid loan diln nhuI, d,ing hu'ang, ddng
nhi~t giup ta ghHdu'<;1ebAitmin tu'dng dt>it6ng quat. Co thlSap dl,!ng
cho cae biii loan mOtchieu, hai ehi6u, ba ehi6u. Di6u ki(:n Iii: h(: s6
Poisson cua v~t li(:u giil lhi6lla hling 56 d6 ,ip dl,!ngphfin Iy bi6u.
Qua lai giili lren, vi~c xac dinh bi6u thue up(t) dff du'<;1eI~p ldnh Huh
loan hluh thuc, phI,!thuOcvao ham E(t) t6ng quat cua v~t li~u diin
nhot.B6i vai cae nghii;1l1daB h6i Un. tim bling phu'l1ngpluip ph~n Iii'
hO'uh~n, ta dffc6 giili lhu~t I~p trlnh .
5.3. Bai toan 3 :Tinh toun hid toan cIIh(}cngfiu nhien hiing plllMng
pIlar phfin hi huu'h~n ngfiu nhien.
5.3.1/ Phu'dng pilar rh~n Iii' hO'uhall ngfiu nhicn:
2\
Trong Cd H<;>c,cac bili lmin v~ ng~u nhien lllliong lien quaIl dC'nm(Hh<';
phttdng tdnh vi phan tuye'n llnh vdi cac h9 s6 ng~u nhien
A(x,B)ll(X,B) = f(x,B) (*)
Khong H\mgi<lmlinh 16ngquat, (*) e6 Ih6 vie't d~ng :
[L(x) + a(x,e)R(x)]u(x,e) = j(x,e) ,x ED
L la mQtloan 01vi phan xae dinh, n la mQtloan Iii'vi phan co cae h~ s6
la eae qua tdnh ng~u nhien trung btnh khong, R(x) la mQt loan hI xae
djnh , dttdi I11Qts6 gii\ lhie-tta e6 th6 khai lri6n:
N
u(x,e) = Lu;(e)g; (x) trong do: g;(x) la cae da thue lien tl,le lung
;=1
khue eo dtp dil de sinh fa khong gian ham Ihii'.(de ddn gian each vie'lla
sc bo qua ky hi~lIe ) :
N
L u;[L(x)+ a(x)R(x)]gj(x) = lex)
;=1
Nhan 2 vfSeho gj(x) vii lich phan Iren Illi~n D s :
t[I~L(X)g;eX»)g/X)dx+ Ia(x)[R(X)g;(X)]g/X)dx}; =yex)g;(X)dx
Khai trien a(x,O) lheo dIng cd s() nhtt u(x,O) , khi do vC'Inti se baa g6m
mOt ma lr~o co de philo Iii'Il(dng qual1.
I)~ roi n.IC haa mOL qua Ir1nh ngftu nhien, la ap u~lng kiwi IriOn
AI
a(x) = I AII~II(/II(X)
Kafhllnen-Loeve rho a(x,O) :
II ~ I
Anvii an(x) Iii cae gi;, Iri ricng va vector ricng coa ham llt't1ngquan coa
ham a(x, e) , va ~"fa tijJ1cae bie'i, IIgiillll!riell tqlc ciao. ~" fa cae bie'll
trollg cac da tltuc cltaos (ltall lo{lll). Cac da tltuc lIay dii du{lc xay d1!llg
dum d{lllg gidi licIt qua 11lf!tcltUdllg trillit tillIt toall Itillit thuc.Nhit do,
vi~c riti r{lc 11lf!tqua trillit Ilgau Illtiell dii th(lC lti?1l dU{lc.
N
[
M
]
" K +"J:K.(."j 1I.=
(
.;j=l, ,N,
L '1 L ,"'1 ' . 1
;= I ,,~I
, K;j = HL(x).!:;(x)Fj(x)dx; K;~") = ja,,(x)[L(x)g;(X)Fj(x)dx
tfong do : I) /J
./; = ff(x).!:j(x)dx
J)
Vie't l~i h9 tfen dttdi d~ng Illa Ir~n. vii Sl?(d~lng khai Iri0n Neumann d(,)i
22
voi tmin tii' ngu'<;1c, ta c6 :
[
M M N
I U= I-~;IIQ(II'+~~;II;fIlQ(II)Q(fIl)-
AI AI M
- """ ;: ;: ;:
Q
(I)
Q
(fIl'
Q
(II) +
~~~~~'~I
1=1.,=1 11=1
]g
Nhan xet: C6 hai qua trlnh song song trong bai loan. Qua trlnh xac djnh
va qua trlnh ng~u nhien. Voi qua trlnh xac dinh ta c6 th~ roi r1).cbling
cac phu'ong pIlar Galerkin. Con qua trlnh ngfiu nhien ta ap d\lI1gkhai
tri~n Karhunen-Loeve, trong do, dn thie't phai sii' dl,lI1gcac da thuc
chaos (d d1).ngghli tkh). Hai qua trlnh roi r1).c11Oanay la co sd cua ph§n
Iii'huu h1).nng~u nhien.
5.3.2/ Ap dung giai bai loan khuye'ch tan khl thai ba chi~u theo m6 hlnh
ng~u nhien.
Voi m6 hlnh tu'ong It! bai tmin ti~n djnh d ph§n tren, trong do gia thie't
~
them fling: v~n to'c gio v = (u, v, w) la qua trlnh ngfiu nhien, va do do
m~t dQ <p(x,y,z,t) cunfj tnti'lng ng/iu nhien.
Roi r1).cmi~n xac dinh va xflp xi trcn tung ph§n tll :
cp(x,y,z,t,B) = Ne(x,y,z)<P,,(t,B) voi <D,,(t,B)= ~<D(t,B)
chUng ta tho du'<;1cM phu'ong trlnh ma nghi~m la gia trj cua cp t1).inut
. .
ciia cac ph§n Iii': M<D(t,B) +K<D(t,B) = F(t,e)
Khai tri~n Karhunen-Loeve clIo d1).iIU(1ngngfiu nhien v~n to'c gio:
- - - AI . - (*)
V(x,y,,",/,B) - V(x,y,z,/) + Lc;k (B)JAk(/).fk(X,y,-,t)
kd
Ap dl,lngphu'ong phcip phfln IIIhull h~\l1ngiill lIllicH,ta co ph6 cua <bet)
co d1).ng:
[
AI
]
-1
[
AI
]
-"
S<I><I>«(») = J + t;;kR~k' SI'I,«(v) J + h;k Ril)
(Chi sO'H th~ hi9n bie'n d6i Hermite)
ho~c la sii'd\lI1gkhai tri~n Neumann clIo to<intll ngu'<;1c, ta co:
if) if)
S'f>Ij'(lV)= II(-I);+i[;kR~k)r SI",(OJ)[;kR~k)r
;=1}=I
23
5.3.3/ LSp-~t~IJJgJJnIUvii nJ,;h"Lb.iIi Iwi II_Y.UI ni 11biOn dilll~\{t1LyO IliOu nJ
cae tham s6 ng~u nhi6n- VIdu bili loan t[tlll:
Xct mQttffmmong eo cae di~u ki~n bien phu h<;1p.Gia sii'modul dan
IH1iella 1[111111\111()1qU:I 1I'111hIIgITuIIhi6n Gauss hai chi~lI v<1igii1 II"
trung blnh E va ham hi~p phudng sui C( xI' X2) dii bie't, h!e ngoai la
ti~n d~nh.Ap d\lllg phudng pIlar phffn tii' hUll h~n ng~ u nhien, ehia tffm
thilnh N phffn tii'tu giae, m6i phffn tii' eo 8 b~e It! do.
Sau khi tinh loan, V e6 th6 e6 eae khai tri6n :
r
U = 2:>i\jl;[{~,}],
k=1
eae Cj du<;letinh qua h~ phudng trlnh d~i s6 :
[~< c;\Wi[{.;J]lflj[{';/}]> l«(kJ, =< Wj[{,;,}]f >, .i = too.P.
5.3.4/ Ke't loan eua bili loan 3:
Sii' d\lJ1gkhai Ir6n Karhunen-Loeve vii da !IJlI'Chi\n lOi.1n d6 xfiy d~(ng
1Il(>IIIl(ihlnh cho plll(dng philp ph~n Iii' hl(u h:.ln ng~u nhiC.n se rfi'III\lI~n
lii)n eho cae bili loan cel hQe ngfJu nhi6n trong khi mOt viti phuong phap
mo phOng s6 eho qua trlnh ng~ u nhien 1ilrfft kIlo.
D~e bi~t, ehung toi nhffn m~nh r~ng, hffu he't cae eong thue trang
phu'(jng phap nily e6 Ih0 Linh toan hlnh IhlICIr6n l11:iyLinhIn(tk khi
ehuy6n sang cae ng{\n ngu IInh Imln s61ruy6n Ih()ng.
KET LU~N
V~ nguyen t5e bfft ky loan tii' loan hQe nao e6 <.:flutrue di~i sfj cling e6
th6 thJ,fehi~n du<;1ctr6n h<;d~li s6 may tinh.
Ung dl,lng eae giili Ihu~1 tinh loan hlnh thue, Iwiy tinh sc giup la tlll,l'e
hi9n mOLkh6i lu<;lngIOnnhung llnh loan, bie'n d6i de bi6u lhuc loan
hQe lrude khi dua vao l~p lrlnh s6.
Ke't h<;lpcae giili thu~1 eua d~i s6 may tinh vii giiii Ihu~1 sfj II'uy6n (htJng
(a sc xay dJ,fllgdu<;!e111(>1h<;clllMng 1I'111hHllh Imlll ({illgquill giiii 111('(
lOp cae bili loan cd hQe .
Cfn nhffn m~nh r~ng: l~p tdnh tinh loan hlnh thue eo kha Hang ehuy6n
d6i ke't qua sang cae ngon ngu truy~n th6ng (C, Fortran, ) do do, e6
th6 tie'n de'n moi truClng tJ,fdOng I~p Irlnh (aulo-eoding) eho cae bai loan
ed hQc.