Tải bản đầy đủ (.pdf) (329 trang)

Bài tập Toán cao cấp A3

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.54 MB, 329 trang )

NGUY
ˆ
E
˜
N THUY

THANH
B
`
AI T
ˆ
A
.
P
TO
´
AN CAO C
ˆ
A
´
P
Tˆa
.
p3
Ph´ep t´ınh t´ıch phˆan. L´y thuyˆe
´
t chuˆo
˜
i.
Phu
.


o
.
ng tr`ınh vi phˆan
NH
`
AXU
ˆ
A
´
TBA

NDA
.
IHO
.
CQU
ˆ
O
´
C GIA H
`
AN
ˆ
O
.
I
Mu
.
clu
.

c
10 T´ıch phˆan bˆa
´
tdi
.
nh 4
10.1 C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan . . . . . . . . . . . . 4
10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa
´
td
i
.
nh 4
10.1.2 Phu
.
o
.
ng ph´ap d
ˆo

ibiˆe
´
n 12
10.1.3 Phu
.
o

.
ng ph´ap t´ıch phˆan t`u
.
ng phˆa
`
n 21
10.2 C´ac l´o
.
p h`am kha

t´ıch trong l´o
.
p c´ac h`am so
.
cˆa
´
p 30
10.2.1 T´ıch phˆan c´ac h`am h˜u
.
uty

30
10.2.2 T´ıch phˆan mˆo
.
tsˆo
´
h`am vˆo ty

d
o

.
n gia

n 37
10.2.3 T´ıch phˆan c´ac h`am lu
.
o
.
.
ng gi´ac . . . . . . . . . . 48
11 T´ıch phˆan x´ac d
i
.
nh Riemann 57
11.1 H`am kha

t´ıch Riemann v`a t´ıch phˆan x´ac d
i
.
nh . . . . . 58
11.1.1 D
-
i
.
nhngh˜ıa 58
11.1.2 D
-
iˆe
`
ukiˆe

.
nd
ˆe

h`am kha

t´ıch 59
11.1.3 C´ac t´ınh chˆa
´
tco
.
ba

ncu

a t´ıch phˆan x´ac d
i
.
nh . . 59
11.2 Phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan x´ac d
i
.
nh 61
11.3 Mˆo
.
tsˆo

´
´u
.
ng du
.
ng cu

a t´ıch phˆan x´ac d
i
.
nh 78
11.3.1 Diˆe
.
n t´ıch h`ınh ph˘a

ng v`a thˆe

t´ıch vˆa
.
tthˆe

78
11.3.2 T´ınh d
ˆo
.
d`ai cung v`a diˆe
.
n t´ıch m˘a
.
t tr`on xoay . . 89

11.4 T´ıch phˆan suy rˆo
.
ng 98
11.4.1 T´ıch phˆan suy rˆo
.
ng cˆa
.
n vˆo ha
.
n 98
11.4.2 T´ıch phˆan suy rˆo
.
ng cu

a h`am khˆong bi
.
ch˘a
.
n . . 107
2MU
.
CLU
.
C
12 T´ıch phˆan h`am nhiˆe
`
ubiˆe
´
n 117
12.1 T´ıch phˆan 2-l´o

.
p 118
12.1.1 Tru
.
`o
.
ng ho
.
.
pmiˆe
`
nch˜u
.
nhˆa
.
t 118
12.1.2 Tru
.
`o
.
ng ho
.
.
pmiˆe
`
ncong 118
12.1.3 Mˆo
.
t v`ai ´u
.

ng du
.
ng trong h`ınh ho
.
c 121
12.2 T´ıch phˆan 3-l´o
.
p 133
12.2.1 Tru
.
`o
.
ng ho
.
.
pmiˆe
`
n h`ınh hˆo
.
p 133
12.2.2 Tru
.
`o
.
ng ho
.
.
pmiˆe
`
ncong 134

12.2.3 136
12.2.4 Nhˆa
.
nx´etchung 136
12.3 T´ıch phˆan d
u
.
`o
.
ng 144
12.3.1 C´ac d
i
.
nh ngh˜ıa co
.
ba

n 144
12.3.2 T´ınh t´ıch phˆan d
u
.
`o
.
ng 146
12.4 T´ıch phˆan m˘a
.
t 158
12.4.1 C´ac d
i
.

nh ngh˜ıa co
.
ba

n 158
12.4.2 Phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan m˘a
.
t 160
12.4.3 Cˆong th´u
.
c Gauss-Ostrogradski . . . . . . . . . 162
12.4.4 Cˆong th´u
.
cStokes 162
13 L´y thuyˆe
´
t chuˆo
˜
i 177
13.1 Chuˆo
˜
isˆo
´
du
.
o

.
ng 178
13.1.1 C´ac d
i
.
nh ngh˜ıa co
.
ba

n 178
13.1.2 Chuˆo
˜
isˆo
´
du
.
o
.
ng 179
13.2 Chuˆo
˜
ihˆo
.
itu
.
tuyˆe
.
td
ˆo
´

iv`ahˆo
.
itu
.
khˆong tuyˆe
.
tdˆo
´
i . . . 191
13.2.1 C´ac d
i
.
nh ngh˜ıa co
.
ba

n 191
13.2.2 Chuˆo
˜
id
an dˆa
´
u v`a dˆa
´
uhiˆe
.
u Leibnitz . . . . . . 192
13.3 Chuˆo
˜
il˜uy th`u

.
a 199
13.3.1 C´ac d
i
.
nh ngh˜ıa co
.
ba

n 199
13.3.2 D
-
iˆe
`
ukiˆe
.
n khai triˆe

nv`aphu
.
o
.
ng ph´ap khai triˆe

n 201
13.4 Chuˆo
˜
iFourier 211
13.4.1 C´ac d
i

.
nh ngh˜ıa co
.
ba

n 211
MU
.
CLU
.
C3
13.4.2 Dˆa
´
uhiˆe
.
udu

vˆe
`
su
.
.
hˆo
.
itu
.
cu

a chuˆo
˜

i Fourier . . . 212
14 Phu
.
o
.
ng tr`ınh vi phˆan 224
14.1 Phu
.
o
.
ng tr`ınh vi phˆan cˆa
´
p1 225
14.1.1 Phu
.
o
.
ng tr`ınh t´ach biˆe
´
n 226
14.1.2 Phu
.
o
.
ng tr`ınh d
˘a

ng cˆa
´
p 231

14.1.3 Phu
.
o
.
ng tr`ınh tuyˆe
´
nt´ınh 237
14.1.4 Phu
.
o
.
ng tr`ınh Bernoulli . . . . . . . . . . . . . . 244
14.1.5 Phu
.
o
.
ng tr`ınh vi phˆan to`an phˆa
`
n 247
14.1.6 Phu
.
o
.
ng tr`ınh Lagrange v`a phu
.
o
.
ng tr`ınh Clairaut255
14.2 Phu
.

o
.
ng tr`ınh vi phˆan cˆa
´
pcao 259
14.2.1 C´ac phu
.
o
.
ng tr`ınh cho ph´ep ha
.
thˆa
´
pcˆa
´
p 260
14.2.2 Phu
.
o
.
ng tr`ınh vi phˆan tuyˆe
´
n t´ınh cˆa
´
p2v´o
.
ihˆe
.
sˆo
´

h˘a
`
ng 264
14.2.3 Phu
.
o
.
ng tr`ınh vi phˆan tuyˆe
´
n t´ınh thuˆa
`
n nhˆa
´
t
cˆa
´
p n
n
n (ptvptn cˆa
´
p n
n
n)v´o
.
ihˆe
.
sˆo
´
h˘a
`

ng . . . . . . 273
14.3 Hˆe
.
phu
.
o
.
ng tr`ınh vi phˆan tuyˆe
´
n t´ınh cˆa
´
p1v´o
.
ihˆe
.
sˆo
´
h˘a
`
ng290
15 Kh´ai niˆe
.
mvˆe
`
phu
.
o
.
ng tr`ınh vi phˆan d
a

.
o h`am riˆeng 304
15.1 Phu
.
o
.
ng tr`ınh vi phˆan cˆa
´
p 1 tuyˆe
´
n t´ınh d
ˆo
´
iv´o
.
i c´ac d
a
.
o
h`amriˆeng 306
15.2 Gia

iphu
.
o
.
ng tr`ınh d
a
.
o h`am riˆeng cˆa

´
p2do
.
n gia

n nhˆa
´
t 310
15.3 C´ac phu
.
o
.
ng tr`ınh vˆa
.
tl´y to´an co
.
ba

n 313
15.3.1 Phu
.
o
.
ng tr`ınh truyˆe
`
n s´ong . . . . . . . . . . . . 314
15.3.2 Phu
.
o
.

ng tr`ınh truyˆe
`
n nhiˆe
.
t 317
15.3.3 Phu
.
o
.
ng tr`ınh Laplace . . . . . . . . . . . . . . 320
T`ai liˆe
.
u tham kha

o 327
Chu
.
o
.
ng 10
T´ıch phˆan bˆa
´
td
i
.
nh
10.1 C´ac phu
.
o
.

ng ph´ap t´ınh t´ıch phˆan . . . . . . 4
10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa
´
td
i
.
nh 4
10.1.2 Phu
.
o
.
ng ph´ap dˆo

ibiˆe
´
n 12
10.1.3 Phu
.
o
.
ng ph´ap t´ıch phˆan t`u
.
ng phˆa
`
n 21
10.2 C´ac l´o
.
p h`am kha

t´ıch trong l´o

.
p c´ac h`am
so
.
cˆa
´
p 30
10.2.1 T´ıch phˆan c´ac h`am h˜u
.
uty

30
10.2.2 T´ıch phˆan mˆo
.
tsˆo
´
h`am vˆo ty

d
o
.
n gia

n 37
10.2.3 T´ıch phˆan c´ac h`am lu
.
o
.
.
ng gi´ac . . . . . . . 48

10.1 C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan
10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa
´
tdi
.
nh
D
-
i
.
nh ngh˜ıa 10.1.1. H`am F (x)du
.
o
.
.
cgo
.
i l`a nguyˆen h`am cu

a h`am
f(x) trˆen khoa

ng n`ao d
´onˆe
´
u F (x)liˆen tu

.
c trˆen khoa

ng d´o v`a kha

vi
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 5
ta
.
imˆo
˜
idiˆe

m trong cu

a khoa

ng v`a F

(x)=f(x).
D
-
i
.
nh l ´y 10.1.1. (vˆe
`

su
.
.
tˆo
`
nta
.
i nguyˆen h`am) Mo
.
i h`am liˆen tu
.
ctrˆen
d
oa
.
n [a, b] dˆe
`
u c´o nguyˆen h`am trˆen khoa

ng (a, b).
D
-
i
.
nh l´y 10.1.2. C´ac nguyˆen h`am bˆa
´
tk`ycu

a c`ung mˆo
.

t h`am l`a chı

kh´ac nhau bo
.

imˆo
.
th˘a
`
ng sˆo
´
cˆo
.
ng.
Kh´ac v´o
.
id
a
.
o h`am, nguyˆen h`am cu

a h`am so
.
cˆa
´
p khˆong pha

i bao
gi`o
.

c˜ung l`a h`am so
.
cˆa
´
p. Ch˘a

ng ha
.
n, nguyˆen h`am cu

a c´ac h`am e
−x
2
,
cos(x
2
), sin(x
2
),
1
lnx
,
cos x
x
,
sin x
x
, l`a nh˜u
.
ng h`am khˆong so

.
cˆa
´
p.
D
-
i
.
nh ngh˜ıa 10.1.2. Tˆa
.
pho
.
.
pmo
.
i nguyˆen h`am cu

a h`am f(x) trˆen
khoa

ng (a, b)d
u
.
o
.
.
cgo
.
i l`a t´ıch phˆan bˆa
´

td
i
.
nh cu

a h`am f(x) trˆen khoa

ng
(a, b)v`ad
u
.
o
.
.
ck´yhiˆe
.
ul`a

f(x)dx.
Nˆe
´
u F (x) l`a mˆo
.
t trong c´ac nguyˆen h`am cu

a h`am f(x) trˆen khoa

ng
(a, b) th`ı theo d
i

.
nh l´y 10.1.2

f(x)dx = F (x)+C, C ∈ R
trong d
´o C l`a h˘a
`
ng sˆo
´
t`uy ´y v`a d˘a

ng th´u
.
ccˆa
`
nhiˆe

ul`ad
˘a

ng th ´u
.
cgi˜u
.
a
hai tˆa
.
pho
.
.

p.
C´ac t´ınh chˆa
´
tco
.
ba

ncu

a t´ıch phˆan bˆa
´
td
i
.
nh:
1) d


f(x)dx

= f(x)dx.
2)


f(x)dx


= f(x).
3)


df (x)=

f

(x)dx = f(x)+C.
T`u
.
d
i
.
nh ngh˜ıa t´ıch phˆan bˆa
´
tdi
.
nh r ´ut ra ba

ng c´ac t´ıch phˆan co
.
ba

n (thu
.
`o
.
ng d
u
.
o
.
.

cgo
.
i l`a t´ıch phˆan ba

ng) sau d
ˆay:
6Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
I.

0.dx = C.
II.

1dx = x + C.
III.

x
α
dx =
x
α+1
α +1

+ C, α = −1
IV.

dx
x
=ln|x|+ C, x =0.
V.

a
x
dx =
a
x
lna
+ C (0 <a= 1);

e
x
dx = e
x
+ C.
VI.

sin xdx = −cos x + C.
VII.

cos xdx = sinx + C.
VIII.

dx

cos
2
x
=tgx + C, x =
π
2
+ nπ, n ∈ Z.
IX.

dx
sin
2
x
= −cotgx + C, x = nπ, n ∈ Z.
X.

dx

1 −x
2
=



arc sin x + C,
−arc cos x + C
−1 <x<1.
XI.

dx

1+x
2
=



arctgx + C,
−arccotgx + C.
XII.

dx

x
2
± 1
=ln|x +

x
2
± 1|+ C
(trong tru
.
`o
.
ng ho
.
.
pdˆa
´
utr`u

.
th`ı x<−1 ho˘a
.
c x>1).
XIII.

dx
1 −x
2
=
1
2
ln



1+x
1 −x



+ C, |x|=1.
C´ac quy t˘a
´
c t´ınh t´ıch phˆan bˆa
´
td
i
.
nh:

10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 7
1)

kf(x)dx = k

f(x)dx, k =0.
2)

[f(x) ± g(x)]dx =

f(x)dx ±

g(x)dx.
3) Nˆe
´
u

f(x)dx = F (x)+C v`a u = ϕ(x) kha

vi liˆen tu
.
cth`ı

f(u)du = F (u)+C.
C
´

AC V
´
IDU
.
V´ı du
.
1. Ch´u
.
ng minh r˘a
`
ng h`am y = signx c´o nguyˆen h`am trˆen
khoa

ng bˆa
´
tk`y khˆong ch´u
.
ad
iˆe

m x = 0 v`a khˆong c´o nguyˆen h`am trˆen
mo
.
i khoa

ng ch´u
.
ad
iˆe


m x =0.
Gia

i. 1) Trˆen khoa

ng bˆa
´
t k`y khˆong ch´u
.
ad
iˆe

m x = 0 h`am y = signx
l`a h˘a
`
ng sˆo
´
. Ch˘a

ng ha
.
nv´o
.
imo
.
i khoa

ng (a, b), 0 <a<bta c´o signx =1
v`a do d
´omo

.
i nguyˆen h`am cu

a n´o trˆen (a, b) c´o da
.
ng
F (x)=x + C, C ∈ R.
2) Ta x´et khoa

ng (a, b)m`aa<0 <b. Trˆen khoa

ng (a, 0) mo
.
i
nguyˆen h`am cu

a signx c´o da
.
ng F(x)=−x+C
1
c`on trˆen khoa

ng (0,b)
nguyˆen h`am c´o da
.
ng F (x)=x + C
2
.V´o
.
imo

.
i c´ach cho
.
nh˘a
`
ng sˆo
´
C
1
v`a C
2
ta thu du
.
o
.
.
c h`am [trˆen (a, b)] khˆong c´o d
a
.
o h`am ta
.
idiˆe

m x =0.
Nˆe
´
u ta cho
.
n C = C
1

= C
2
th`ı thu du
.
o
.
.
c h`am liˆen tu
.
c y = |x| + C
nhu
.
ng khˆong kha

vi ta
.
id
iˆe

m x =0. T`u
.
d
´o, theo di
.
nh ngh˜ıa 1 h`am
signx khˆong c´o nguyˆen h`am trˆen (a, b), a<0 <b. 
V´ı du
.
2. T`ım nguyˆen h`am cu


a h`am f(x)=e
|x|
trˆen to`an tru
.
csˆo
´
.
Gia

i. V´o
.
i x  0 ta c´o e
|x|
= e
x
v`a do d´o trong miˆe
`
n x>0mˆo
.
t
trong c´ac nguyˆen h`am l`a e
x
. Khi x<0 ta c´o e
|x|
= e
−x
v`a do vˆa
.
y
trong miˆe

`
n x<0mˆo
.
t trong c´ac nguyˆen h`am l`a −e
−x
+ C v´o
.
ih˘a
`
ng
sˆo
´
C bˆa
´
tk`y.
Theo d
i
.
nh ngh˜ıa, nguyˆen h`am cu

a h`am e
|x|
pha

i liˆen tu
.
cnˆenn´o
8Chu
.
o

.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
pha

i tho

am˜andiˆe
`
ukiˆe
.
n
lim
x→0+0
e
x
= lim
x→0−0
(−e
−x
+ C)
t´u
.
cl`a1=−1+C ⇒ C =2.
Nhu
.

vˆa
.
y
F (x)=









e
x
nˆe
´
u x>0,
1nˆe
´
u x =0,
−e
−x
+2 nˆe
´
u x<0
l`a h`am liˆen tu
.
c trˆen to`an tru
.

csˆo
´
.Tach´u
.
ng minh r˘a
`
ng F(x) l`a nguyˆen
h`am cu

a h`am e
|x|
trˆen to`an tru
.
csˆo
´
. Thˆa
.
tvˆa
.
y, v´o
.
i x>0 ta c´o
F

(x)=e
x
= e
|x|
,v´o
.

i x<0th`ıF

(x)=e
−x
= e
|x|
. Ta c`on cˆa
`
n pha

i
ch´u
.
ng minh r˘a
`
ng F

(0) = e
0
= 1. Ta c´o
F

+
(0) = lim
x→0+0
F (x) −F (0)
x
= lim
x→0+0
e

x
− 1
x
=1,
F


(0) = lim
x→0−0
F (x) −F (0)
x
= lim
x→0−0
−e
−x
+2− 1
x
=1.
Nhu
.
vˆa
.
y F

+
(0) = F


(0) = F


(0) = 1 = e
|x|
.T`u
.
d
´o c ´o t h ˆe

viˆe
´
t:

e
|x|
dx = F(x)+C =



e
x
+ C, x < 0
−e
−x
+2+C, x < 0. 
V´ı du
.
3. T`ım nguyˆen h`am c´o d
ˆo
`
thi
.

qua diˆe

m(−2,2) dˆo
´
iv´o
.
i h`am
f(x)=
1
x
, x ∈ (−∞, 0).
Gia

i. V`ı (ln|x|)

=
1
x
nˆen ln|x| l`a mˆo
.
t trong c´ac nguyˆen h`am cu

a
h`am f(x)=
1
x
. Do vˆa
.
y, nguyˆen h`am cu


a f l`a h`am F (x)=ln|x|+ C,
C ∈ R.H˘a
`
ng sˆo
´
C d
u
.
o
.
.
cx´acd
i
.
nh t`u
.
d
iˆe
`
ukiˆe
.
n F (−2) = 2, t´u
.
cl`a
ln2 + C =2⇒ C =2−ln2. Nhu
.
vˆa
.
y
F (x)=ln|x|+2− ln2 = ln




x
2



+2. 
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 9
V´ı du
.
4. T´ınh c´ac t´ıch phˆan sau dˆay:
1)

2
x+1
−5
x−1
10
x
dx, 2)

2x +3
3x +2
dx.

Gia

i. 1) Ta c´o
I =


2
2
x
10
x

5
x
5 ·10
x

dx =


2

1
5

x

1
5


1
2

x

dx
=2


1
5

x
dx −
1
5


1
2

x
dx
=2

1
5

x
ln


1
5


1
5

1
2

x
ln
1
2
+ C
= −
2
5
x
ln5
+
1
5 ·2
x
ln2
+ C.
2)
I =


2

x +
3
2

3

x +
2
3

dx =
2
3

x +
2
3

+
5
6


x +
2
3

dx

=
2
3
x +
5
9
ln



x +
2
3



+ C. 
V´ı du
.
5. T´ınh c´ac t´ıch phˆan sau d
ˆay:
1)

tg
2
xdx, 2)

1 + cos
2
x

1 + cos 2x
dx, 3)


1 −sin 2xdx.
Gia

i. 1)

tg
2
xdx =

sin
2
x
cos
2
x
dx =

1 −cos
2
x
cos
2
x
dx
=


dx
cos
2
x


dx =tgx − x + C.
10 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
2)

1 + cos
2
x
1 + cos 2x
dx =

1 + cos
2
x
2 cos
2

x
dx =
1
2


dx
cos
2
x
+

dx

=
1
2
(tgx + x)+C.
3)


1 − sin 2xdx =


sin
2
x − 2 sin x cos x + cos
2
xdx
=



(sin x −cos x)
2
dx =

|sin x −cos x|dx
= (sin x + cos x)sign(cos x −sin x)+C. 
B
`
AI T
ˆ
A
.
P
B˘a
`
ng c´ac ph´ep biˆe
´
nd
ˆo

idˆo
`
ng nhˆa
´
t, h˜ay du
.
a c´ac t´ıch phˆan d
˜acho

vˆe
`
t´ıch phˆan ba

ng v`a t´ınh c´ac t´ıch phˆan d
´o
1
1.

dx
x
4
− 1
.(D
S.
1
4
ln



x − 1
x +1




1
2
arctgx)

2.

1+2x
2
x
2
(1 + x
2
)
dx.(D
S. arctgx −
1
x
)
3.


x
2
+1+

1 − x
2

1 −x
4
dx.(DS. arc sin x +ln|x +

1+x
2

|)
4.


x
2
+1−

1 −x
2

x
4
− 1
dx.(D
S. ln|x +

x
2
− 1|−ln|x +

x
2
+1|)
5.


x
4
+ x

−4
+2
x
3
dx.(DS. ln|x|−
1
4x
4
)
6.

2
3x
− 1
e
x
− 1
dx.(D
S.
e
2x
2
+ e
x
+1)
1
Dˆe

cho go
.

n, trong c´ac “D´ap sˆo
´
”cu

a chu
.
o
.
ng n`ay ch´ung tˆoi bo

qua khˆong viˆe
´
t
c´ac h˘a
`
ng sˆo
´
cˆo
.
ng C.
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 11
7.

2
2x
−1


2
x
dx.(DS.
2
ln2

2
3x
2
3
+2

x
2

)
8.

dx
x(2 + ln
2
x)
.(D
S.
1

2
arctg
lnx


2
)
9.

3

ln
2
x
x
dx.(D
S.
3
5
ln
5/3
x)
10.

e
x
+ e
2x
1 −e
x
dx.(DS. −e
x
− 2ln|e
x

− 1|)
11.

e
x
dx
1+e
x
.(DS. ln(1 + e
x
))
12.

sin
2
x
2
dx.(D
S.
1
2
x −
sin x
2
)
13.

cotg
2
xdx.(DS. −x − cotgx)

14.


1 + sin 2xdx, x ∈

0,
π
2

.(D
S. −cos x + sin x)
15.

e
cosx
sin xdx.(DS. −e
cos x
)
16.

e
x
cos e
x
dx.(DS. sin e
x
)
17.

1

1 + cos x
dx.(D
S. tg
x
2
)
18.

dx
sin x + cos x
.(D
S.
1

2
ln



tg

x
2
+
π
8





)
19.

1 + cos x
(x + sin x)
3
dx.(DS. −
2
2(x + sin x)
2
)
20.

sin 2x

1 − 4 sin
2
x
dx.(D
S. −
1
2

1 −4 sin
2
x)
21.

sin x


2 − sin
2
x
dx.(D
S. −ln|cos x +

1 + cos
2
x|)
12 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
22.

sin x cos x

3 − sin
4
x
dx.(D
S.
1
2

arc sin

sin
2
x

3

)
23.

arccotg3x
1+9x
2
dx.(DS. −
1
6
arccotg
2
3x)
24.

x +

arctg2x
1+4x
2
dx.(DS.
1
8

ln(1 + 4x
2
)+
1
3
arctg
3/2
2x)
25.

arc sin x −arc cos x

1 − x
2
dx.(DS.
1
2
(arc sin
2
x + arc cos
2
x))
26.

x + arc sin
3
2x

1 −4x
2

dx.(DS. −
1
4

1 −4x
2
+
1
8
arc sin
4
2x)
27.

x + arc cos
3/2
x

1 −x
2
dx.(DS. −

1 −x
2

2
5
arc cos
5/2
x)

28.

x|x|dx.(D
S.
|x|
3
3
)
29.

(2x −3)|x −2|dx.
(D
S. F (x)=






2
3
x
3
+
7
2
x
2
− 6x + C, x < 2
2

3
x
3

7
2
x
2
+6x + C, x  2
)
30.

f(x)dx, f(x)=



1 − x
2
, |x|  1,
1 −|x|, |x| > 1.
(D
S. F (x)=





x −
x
3

3
+ C nˆe
´
u |x|  1
x −
x|x|
2
+
1
6
signx + C nˆe
´
u|x| > 1
)
10.1.2 Phu
.
o
.
ng ph´ap d
ˆo

ibiˆe
´
n
D
-
i
.
nh l´y. Gia


su
.

:
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 13
1) H`am x = ϕ(t) x´ac di
.
nh v`a kha

vi trˆen khoa

ng T v´o
.
itˆa
.
pho
.
.
p gi´a
tri
.
l`a khoa

ng X.
2) H`am y = f(x) x´ac d
i

.
nh v`a c´o nguyˆen h`am F (x) trˆen khoa

ng X.
Khi d
´o h`am F(ϕ(t)) l`a nguyˆen h`am cu

a h`am f(ϕ(t))ϕ

(t) trˆen
khoa

ng T .
T`u
.
d
i
.
nh l´y 10.1.1 suy r˘a
`
ng

f(ϕ(t))ϕ

(t)dt = F (ϕ(t)) + C. (10.1)
V`ı
F (ϕ(t)) + C =(F (x)+C)


x=ϕ(t)

=

f(x)dx


x=ϕ(t)
cho nˆen d˘a

ng th ´u
.
c (10.1) c´o thˆe

viˆe
´
tdu
.
´o
.
ida
.
ng

f(x)dx


x=ϕ(t)
=

f(ϕ(t))ϕ


(t)dt. (10.2)
D
˘a

ng th´u
.
c (10.2) d
u
.
o
.
.
cgo
.
i l`a cˆong th´u
.
cd
ˆo

ibiˆe
´
n trong t´ıch phˆan
bˆa
´
td
i
.
nh.
Nˆe
´

u h`am x = ϕ(t) c´o h`am ngu
.
o
.
.
c t = ϕ
−1
(x)th`ıt`u
.
(10.2) thu
d
u
.
o
.
.
c

f(x)dx =

f(ϕ(t))ϕ

(t)dt


t=ϕ
−1
(x)
. (10.3)
Ta nˆeu mˆo

.
t v`ai v´ıdu
.
vˆe
`
ph´ep d
ˆo

ibiˆe
´
n.
i) Nˆe
´
ubiˆe

uth´u
.
cdu
.
´o
.
idˆa
´
u t´ıch phˆan c´o ch´u
.
a c˘an

a
2
− x

2
, a>0
th`ı su
.

du
.
ng ph´ep d
ˆo

ibiˆe
´
n x = a sin t, t ∈


π
2
,
π
2

.
ii) Nˆe
´
ubiˆe

uth´u
.
cdu
.

´o
.
idˆa
´
u t´ıch phˆan c´o ch´u
.
a c˘an

x
2
− a
2
, a>0
th`ı d`ung ph´ep d
ˆo

ibiˆe
´
n x =
a
cos t
,0<t<
π
2
ho˘a
.
c x = acht.
iii) Nˆe
´
u h`am du

.
´o
.
idˆa
´
u t´ıch phˆan ch´u
.
a c˘an th´u
.
c

a
2
+ x
2
, a>0
th`ı c´o thˆe

d
˘a
.
t x = atgt, t ∈


π
2
,
π
2


ho˘a
.
c x = asht.
iv) Nˆe
´
u h`am du
.
´o
.
idˆa
´
u t´ıch phˆan l`a f(x)=R(e
x
,e
2x
, e
nx
)th`ı
c´o thˆe

d
˘a
.
t t = e
x
(o
.

d
ˆay R l`a h`am h˜u

.
uty

).
14 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
C
´
AC V
´
IDU
.
V´ı d u
.
1. T´ınh

dx
cos x
.
Gia

i. Ta c´o


dx
cos x
=

cos xdx
1 −sin
2
x
(d
˘a
.
t t = sin x, dt = cos xdx)
=

dt
1 −t
2
=
1
2
ln



1+t
1 − t




+ C =ln



tg

x
2
+
π
4




+ C. 
V´ı d u
.
2. T´ınh I =

x
3
dx
x
8
− 2
.
Gia

i. ta c´o

I =

1
4
d(x
4
)
x
8
− 2
=


2
4
d

x
4

2

−2

1 −

x
4

2


2

D
˘a
.
t t =
x
4

2
ta thu d
u
.
o
.
.
c
I = −

2
8
ln




2+x
4


2 −x
4



+ C. 
V´ı d u
.
3. T´ınh I =

x
2
dx

(x
2
+ a
2
)
3
·
Gia

i. D
˘a
.
t x(t)=atgt ⇒ dx =
adt
cos
2

t
.Dod
´o
I =

a
3
tg
2
t ·cos
3
tdt
a
3
cos
2
t
=

sin
2
t
cos t
dt =

dt
cos t


cos tdt

=ln



tg

t
2
+
π
4




−sin t + C.
V`ı t = arctg
x
a
nˆen
I =ln



tg

1
2
arctg
x

a
+
π
4




− sin

arctg
x
a

+ C
= −
x

x
2
+ a
2
+ln|x +

x
2
+ a
2
| + C.
10.1. C´ac phu

.
o
.
ng ph´ap t´ınh t´ıch phˆan 15
Thˆa
.
tvˆa
.
y, v`ı sin α = cosα · tgα nˆen dˆe
˜
d`ang thˆa
´
yr˘a
`
ng
sin

arctg
x
a

=
x

x
2
+ a
2
·
Tiˆe

´
p theo ta c´o
sin

1
2
arctg
x
a
+
π
4

cos

1
2
arctg
x
a
+
π
4

=
1 −cos

arctg
x
a

+
π
2

sin

arctg
x
a
+
π
2

=
1 + sin

arctg
x
a

−cos

arctg
x
a

=
x +

a

2
+ x
2
a
v`a t `u
.
d
´o suy ra diˆe
`
u pha

ich´u
.
ng minh. 
V´ı du
.
4. T´ınh I =


a
2
+ x
2
dx.
Gia

i. D
˘a
.
t x = asht. Khi d´o

I =


a
2
(1 + sh
2
t)achtdt = a
2

ch
2
tdt
= a
2

ch2t +1
2
dt =
a
2
2

1
2
sh2t + t

+ C
=
a

2
2
(sht ·cht + t)+C.
V`ıcht =

1+sh
2
t =

1+
x
2
a
2
. e
t
=sht +cht =
x +

a
2
+ x
2
a
nˆen
t =ln



x +


a
2
+ x
2
a



v`a do d
´o


a
2
+ x
2
dx =
x
2

a
2
+ x
2
+
a
2
2
ln|x +


a
2
+ x
2
| + C. 
V´ı du
.
5. T´ınh
1) I
1
=

x
2
+1

x
6
− 7x
4
+ x
2
dx, 2) I
2
=

3x +4

−x

2
+6x −8
dx.
16 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
Gia

i. 1) Ta c´o
I
1
=

1+
1
x
2

x
2
− 7+
1
x

2
dx =

d

x −
1
x



x −
1
x

2
−5
=

dt

t
2
− 5
=ln|t +

t
2
− 5| + C =ln




x −
1
x
+

x
2
−7+
1
x
2



+ C.
2) Ta viˆe
´
tbiˆe

uth´u
.
cdu
.
´o
.
idˆa
´
u t´ıch phˆan du

.
´o
.
ida
.
ng
f(x)=−
3
2
·
−2x +6

−x
2
+6x −8
+13·
1

−x
2
+6x −8
v`a thu d
u
.
o
.
.
c
I
2

=

f(x)dx
= −
3
2

(−x
2
+6x −8)

1
2
d(−x
2
+6x −8) + 13

d(x −3)

1 −(x −3)
2
= −3

−x
2
+6x −8 + 13 arc sin(x −3) + C. 
V´ı d u
.
6. T´ınh
1)


dx
sin x
, 2) I
2
=

sin x cos
3
x
1 + cos
2
x
dx.
Gia

i
1) C´ach I.Tac´o

dx
sin x
=

sin x
sin
2
x
dx =

d(cos x)

cos
2
x −1
=
1
2
ln
1 −cos x
1 + cos x
+ C.
C´ach II.

dx
sin x
=

d

x
2

sin
x
2
cos
x
2
=

d


x
2

tg
x
2
· cos
2
x
2
=

d

tg
x
2

tg
x
2
=ln



tg
x
2




+ C.
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 17
2) Ta c´o
I
2
=

sin x cos x[(cos
2
x +1)−1]
1 + cos
2
x
dx.
Ta d
˘a
.
t t = 1 + cos
2
x.T`u
.
d
´o dt = −2 cos x sin xdx.Dod´o
I

2
= −
1
2

t −1
t
dt = −
t
2
+ln|t|+ C,
trong d
´o t = 1 + cos
2
x. 
V´ı du
.
7. T´ınh
1) I
1
=

e
x
dx

e
2x
+5
, 2) I

2
=

e
x
+1
e
x
− 1
dx.
Gia

i
1) D
˘a
.
t e
x
= t.Tac´oe
x
dx = dt v`a
I
1
=

dt

t
2
+5

=ln|t +

t
2
+5| + C =ln|e
x
+

e
2x
+5|+ C.
2) Tu
.
o
.
ng tu
.
.
,d
˘a
.
t e
x
= t, e
x
dx = dt, dx =
dt
t
v`a thu d
u

.
o
.
.
c
I
2
=

t +1
t − 1
dt
t
=

2dt
t −1


dt
t
= 2ln|t − 1|−ln|t|+ C
= 2ln|e
x
− 1|−lne
x
+ c
=ln(e
x
− 1)

2
− x + C. 
B
`
AI T
ˆ
A
.
P
T´ınh c´ac t´ıch phˆan:
1.

e
2x
4

e
x
+1
dx.(D
S.
4
21
(3e
x
− 4)
4

(e
x

+1)
3
)
Chı

dˆa
˜
n. D
˘a
.
t e
x
+1=t
4
.
18 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
2.

dx

e

x
+1
.(D
S. ln




1+e
x
−1

1+e
x
+1



)
3.

e
2x
e
x
− 1
dx.(D
S. e
x
+ln|e

x
− 1|)
4.


1+lnx
x
dx.(D
S.
2
3

(1 + lnx)
3
)
5.


1+lnx
xlnx
dx.
(D
S. 2

1+lnx −ln|lnx|+ 2ln|

1+lnx − 1|)
6.

dx

e
x/2
+ e
x
.(DS. −x − 2e

x
2
+ 2ln(1 + e
x
2
))
7.

arctg

x

x
dx
1+x
.(D
S. (arctg

x)
2
)
8.



e
3x
+ e
2x
dx.(DS.
2
3
(e
x
+1)
3/2
)
9.

e
2x
2
+2x−1
(2x +1)dx.(DS.
1
2
e
2x
2
+2x−1
)
10.

dx


e
x
−1
.(D
S. 2arctg

e
x
− 1)
11.

e
2x
dx

e
4x
+1
.(D
S.
1
2
ln(e
2x
+

e
4x
+1))
12.


2
x
dx

1 −4
x
.(DS.
arc sin 2
x
ln2
)
13.

dx
1+

x +1
.(D
S. 2[

x +1− ln(1 +

x + 1)])
Chı

dˆa
˜
n. D
˘a

.
t x +1=t
2
.
14.

x +1
x

x − 2
dx.(D
S. 2

x −2+

2arctg

x − 2
2
)
15.

dx

ax + b + m
.(D
S.
2
a
√

ax + b −mln|

ax + b + m|

)
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 19
16.

dx
3

x(
3

x −1)
.(D
S. 3
3

x + 3ln|
3

x −1|)
17.

dx

(1 −x
2
)
3/2
.(DS. tg(arc sin x))
Chı

dˆa
˜
n. D
˘a
.
t x = sin t, t ∈


π
2
,
π
2

)
18.

dx
(x
2
+ a
2
)

3/2
.(DS.
1
a
2
sin

arctg
x
a

)
Chı

dˆa
˜
n. D
˘a
.
t x = atgt, t ∈


π
2
,
π
2

.
19.


dx
(x
2
− 1)
3/2
.(DS. −
1
cos t
, t = arc sin
1
x
)
Chı

dˆa
˜
n. D
˘a
.
t x =
1
sin t
, −
π
2
<t<0, 0 <t<
π
2
.

20.


a
2
−x
2
dx.(DS.
a
2
2
arc sin
x
a
+
x

a
2
− x
2
2
)
Chı

dˆa
˜
n. D
˘a
.

t x = a sin t.
21.


a
2
+ x
2
dx.(DS.
x
2

a
2
+ x
2
+
a
2
2
ln|x +

a
2
+ x
2
|)
Chı

dˆa

˜
n. D
˘a
.
t x = asht.
22.

x
2

a
2
+ x
2
dx.(DS.
1
2

x

a
2
+ x
2
− a
2
ln(x +

a
2

+ x
2
)

)
23.

dx
x
2

x
2
+ a
2
.(DS. −

x
2
+ a
2
a
2
x
)
Chı

dˆa
˜
n. D

˘a
.
t x =
1
t
ho˘a
.
c x = atgt, ho˘a
.
c x = asht.
24.

x
2
dx

a
2
−x
2
.(DS.
a
2
2
arc sin
x
a

x
a


a
2
−x
2
)
Chı

dˆa
˜
n. D
˘a
.
t x = a sin t.
25.

dx
x

x
2
− a
2
.(DS. −
1
a
arc sin
a
x
)

20 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
Chı

dˆa
˜
n. D˘a
.
t x =
1
t
, ho˘a
.
c x =
a
cos t
ho˘a
.
c x = acht.
26.



1 −x
2
x
2
dx.(DS. −

1 −x
2
x
−arc sin x)
27.

dx

(a
2
+ x
2
)
3
.(DS.
x
a
2

x
2
+ a
2
)

28.

dx
x
2

x
2
− 9
.(D
S.

x
2
− 9
9x
)
29.

dx

(x
2
− a
2
)
3
.(DS. −
x
a

2

x
2
− a
2
)
30.

x
2

a
2
− x
2
dx.
(D
S. −
x
4
(a
2
− x
2
)
3/2
+
a
2

8
x

x
2
− a
2
+
a
4
8
arc sin
x
a
)
31.


a + x
a −x
dx.(D
S. −

a
2
− x
2
+ arc sin
x
a

)
Chı

dˆa
˜
n. D
˘a
.
t x = a cos 2t.
32.


x −a
x + a
dx.
(D
S.

x
2
− a
2
− 2aln(

x −a +

x + a)nˆe
´
u x>a,



x
2
− a
2
+2aln(

−x + a +

−x −a)nˆe
´
u x<−a)
Chı

dˆa
˜
n. D
˘a
.
t x =
a
cos 2t
.
33.


x −1
x +1
dx
x

2
.(DS. arc cos
1
x


x
2
−1
x
)
Chı

dˆa
˜
n. D
˘a
.
t x =
1
t
.
34.

dx

x −x
2
.(DS. 2arc sin


x)
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 21
Chı

dˆa
˜
n. D˘a
.
t x = sin
2
t.
35.


x
2
+1
x
dx.(D
S.

x
2
+1− ln




1+

x
2
+1
x



)
36.

x
3
dx

2 −x
2
.(DS. −
x
2
3

2 − x
2

4
3


2 −x
2
)
37.


(9 − x
2
)
2
x
6
dx.(DS. −

(9 −x
2
)
5
45x
5
)
38.

x
2
dx

x
2
−a

2
.(DS.
x
2

x
2
−a
2
+
a
2
2
ln|x +

x
2
− a
2
|)
39.

(x +1)dx
x(1 + xe
x
)
.(D
S. ln




xe
x
1+xe
x



)
Chı

dˆa
˜
n. Nhˆan tu
.

sˆo
´
v`a mˆa
˜
usˆo
´
v´o
.
i e
x
rˆo
`
id˘a
.

t xe
x
= t.
40.

dx
(x
2
+ a
2
)
2
.(DS.
1
2a
3

arctg
x
a
+
ax
x
2
+ a
2

)
Chı


dˆa
˜
n. D
˘a
.
t x = atgt.
10.1.3 Phu
.
o
.
ng ph´ap t´ıch phˆan t`u
.
ng phˆa
`
n
Phu
.
o
.
ng ph´ap t´ıch phˆan t`u
.
ng phˆa
`
ndu
.
.
a trˆen d
i
.
nh l´y sau dˆay.

D
-
i
.
nh l´y. Gia

su
.

trˆen khoa

ng D c´ac h`am u(x) v`a v(x) kha

vi v`a h`am
v(x)u

(x) c´o nguyˆen h`am. Khi d´o h`am u(x)v

(x) c´o nguyˆen h`am trˆen
D v`a

u(x)v

(x)dx = u(x)v(x) −

v(x)u

(x)dx. (10.4)
Cˆong th´u
.

c (10.4) d
u
.
o
.
.
cgo
.
i l`a cˆong th´u
.
c t´ınh t´ıch phˆan t`u
.
ng phˆa
`
n.
V`ı u

(x)dx = du v`a v

(x)dx = dv nˆen (10.4) c´o thˆe

viˆe
´
tdu
.
´o
.
ida
.
ng


udv = uv −

vdu. (10.4*)
Thu
.
.
ctˆe
´
cho thˆa
´
yr˘a
`
ng phˆa
`
nl´o
.
n c´ac t´ıch phˆan t´ınh d
u
.
o
.
.
cb˘a
`
ng
ph´ep t´ıch phˆan t`u
.
ng phˆa
`

n c´o thˆe

phˆan th`anh ba nh´om sau d
ˆa y .
22 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
Nh´om I gˆo
`
mnh˜u
.
ng t´ıch phˆan m`a h`am du
.
´o
.
idˆa
´
u t´ıch phˆan c´o ch ´u
.
a
th `u
.
asˆo

´
l`a mˆo
.
t trong c´ac h`am sau d
ˆay: lnx, arc sin x, arc cos x, arctgx,
(arctg x)
2
, (arc cos x)
2
,lnϕ(x), arc sin ϕ(x),
D
ˆe

t´ınh c´ac t´ıch phˆan n`ay ta ´ap du
.
ng cˆong th´u
.
c (10.4*) b˘a
`
ng c´ach
d
˘a
.
t u(x)b˘a
`
ng mˆo
.
t trong c´ac h`am d˜achı

ra c`on dv l`a phˆa

`
n c`on la
.
icu

a
biˆe

uth´u
.
cdu
.
´o
.
idˆa
´
u t´ıch phˆan.
Nh´om II gˆo
`
mnh˜u
.
ng t´ıch phˆan m`a biˆe

uth´u
.
cdu
.
´o
.
idˆa

´
u t´ıch phˆan
c´o da
.
ng P (x)e
ax
, P(x) cos bx, P(x) sin bx trong d´o P (x)l`adath´u
.
c, a,
b l`a h˘a
`
ng sˆo
´
.
D
ˆe

t´ınh c´ac t´ıch phˆan n`ay ta ´ap du
.
ng (10.4*) b˘a
`
ng c´ach d˘a
.
t u(x)=
P (x), dv l`a phˆa
`
n c`on la
.
icu


abiˆe

uth´u
.
cdu
.
´o
.
idˆa
´
u t´ıch phˆan. Sau mˆo
˜
i
lˆa
`
n t´ıch phˆan t`u
.
ng phˆa
`
nbˆa
.
ccu

ad
ath´u
.
c s˜e gia

mmˆo
.

td
o
.
nvi
.
.
Nh´om III gˆo
`
mnh˜u
.
ng t´ıch phˆan m`a h`am du
.
´o
.
idˆa
´
ut´ıch phˆan c´o
da
.
ng: e
ax
sin bx, e
ax
cos bx, sin(lnx), cos(lnx), Sau hai lˆa
`
n t´ıch phˆan
t`u
.
ng phˆa
`

n ta la
.
ithud
u
.
o
.
.
c t´ıch phˆan ban d
ˆa
`
uv´o
.
ihˆe
.
sˆo
´
n`ao d
´o. D´ol`a
phu
.
o
.
ng tr`ınh tuyˆe
´
n t´ınh v´o
.
iˆa

n l`a t´ıch phˆan cˆa

`
n t´ınh.
D
u
.
o
.
ng nhiˆen l`a ba nh´om v`u
.
a nˆeu khˆong v´et hˆe
´
tmo
.
it´ıch phˆan
t´ınh d
u
.
o
.
.
cb˘a
`
ng t´ıch phˆan t`u
.
ng phˆa
`
n (xem v´ıdu
.
6).
Nhˆa

.
nx´et. Nh`o
.
c´ac phu
.
o
.
ng ph´ap d
ˆo

ibiˆe
´
n v`a t´ıch phˆan t`u
.
ng phˆa
`
n
ta ch´u
.
ng minh d
u
.
o
.
.
c c´ac cˆong th´u
.
cthu
.
`o

.
ng hay su
.

du
.
ng sau d
ˆay:
1)

dx
x
2
+ a
2
=
1
a
arctg
x
a
+ C, a =0.
2)

dx
a
2
− x
2
=

1
2a
ln



a + x
a −x



+ C, a =0.
3)

dx

a
2
− x
2
= arc sin
x
a
+ C, a =0.
4)

dx

x
2

± a
2
=ln|x +

x
2
± a
2
| + C.
10.1. C´ac phu
.
o
.
ng ph´ap t´ınh t´ıch phˆan 23
C
´
AC V
´
IDU
.
V´ı du
.
1. T´ınh t´ıch phˆan I =


xarctg

xdx.
Gia


i. T´ıch phˆan d
˜a cho thuˆo
.
c nh´om I. Ta d˘a
.
t
u(x) = arctg

x,
dv =

xdx.
Khi d
´o du =
1
1+x
·
dx
2

x
, v =
2
3
x
3
2
.Dod´o
I =
2

3
x
3
2
arctg

x −
1
3

x
1+x
dx
=
2
3
x
3
2
arctg

x −
1
3


1 −
1
1+x


dx
=
2
3
x
3
2
arctg

x −
1
3
(x −ln|1+x|)+C. 
V´ı du
.
2. T´ınh I =

arc cos
2
xdx.
Gia

i. Gia

su
.

u = arc cos
2
x, dv = dx. Khi d´o

du = −
2arc cos x

1 −x
2
dx, v = x.
Theo (10.4*) ta c´o
I = xarc cos
2
x +2

xarc cos x

1 −x
2
dx.
D
ˆe

t´ınh t´ıch phˆan o
.

vˆe
´
pha

id
˘a

ng th´u

.
cthud
u
.
o
.
.
ctad
˘a
.
t u =
arc cos x, dv =
xdx

1 −x
2
. Khi d´o
du = −
dx

1 −x
2
,v= −

d(

1 −x
2
)=−


1 −x
2
+ C
1
v`a ta chı

cˆa
`
nlˆa
´
y v = −

1 − x
2
:

xarc cos x

21 − x
2
dx = −

1 − x
2
arc cos x −

dx
= −

1 − x

2
arc cos x − x + C
2
.
24 Chu
.
o
.
ng 10. T´ıch phˆan bˆa
´
td
i
.
nh
Cuˆo
´
ic`ung ta thu du
.
o
.
.
c
I = xarc cos
2
x −2

1 − x
2
arc cos x − 2x + C. 
V´ı d u

.
3. T´ınh I =

x
2
sin 3xdx.
Gia

i. T´ıch phˆan d
˜a cho thuˆo
.
c nh´om II. Ta d˘a
.
t
u(x)=x
2
,
dv = sin 3xdx.
Khi d
´o du =2xdx, v = −
1
3
cos 3x v`a
I = −
1
3
x
2
cos 3x +
2

3

x cos 3xdx = −
1
3
x
2
cos 3x +
2
3
I
1
.
Ta cˆa
`
n t´ınh I
1
.D˘a
.
t u = x, dv = cos 3xdx. Khi d´o du =1dx,
v =
1
3
sin 3x.T`u
.
d
´o
I = −
1
3

x
2
cos 3x +
2
3

1
3
x sin 3x −
1
3

sin 3xdx

= −
1
3
x
2
cos 3x +
2
9
x sin 3x +
2
27
cos 3x + C. 
Nhˆa
.
n x´et. Nˆe
´

ud
˘a
.
t u = sin 3x, dv = x
2
dx th`ı lˆa
`
n t´ıch phˆan t`u
.
ng
phˆa
`
nth´u
.
nhˆa
´
t khˆong d
u
.
ad
ˆe
´
n t´ıch phˆan do
.
n gia

nho
.
n.
V´ı d u

.
4. T´ınh I =

e
ax
cos bx; a, b =0.
Gia

i. D
ˆay l`a t´ıch phˆan thuˆo
.
c nh´om III. Ta d˘a
.
t u = e
ax
, dv =
cos bxdx. Khi d
´o du = ae
ax
dx, v =
1
b
sin bx v`a
I =
1
b
e
ax
sin bx −
a

b

e
ax
sin bxdx =
1
b
e
ax
sin bx −
a
b
I
1
.
D
ˆe

t´ınh I
1
ta d˘a
.
t u = e
ax
, dv = sin bxdx. Khi d´o du = ae
ax
dx,
v = −
1
b

cos bx v`a
I
1
= −
1
b
e
ax
cos bx +
a
b

e
ax
cos bxdx.

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×