Tải bản đầy đủ (.pdf) (13 trang)

Nghiên cứu, chế tạo nhựa sinh học từ hạt mít

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.77 MB, 13 trang )

45B, 2020

Khoa Cơng

khí


khóa. N
.

Abstract. In this article, the authors synthesized and analyzed research papers that dealt with the fabrication
and characterization of starch-based bioplastics. As the first step, some fruit-seeds were investigated for
starch supply ability. Results revealed that compared to durian-seed and avocado-seed, jack fruit-seed had
the highest starch ratio. Furthermore, it was not only easy to collect but also cheap or even free of charge.
Afterward, a starch-based bioplastic fabrication procedure was synthesized from the literature review. From
preliminary tests, plasticizers were sufficiently selected, including H 2O, glycerol, natri bicarbonate and acid
citric. Four kinds of bioplastic utilizing different combinations of these plasticizers were then fabricated to
study the effect of them as well as characterize the properties of the corresponding bioplastics. After that,
based on ASTM D412 type A standard, a mold and a cutting tool for dog-bone sample making were
designed and fabricated. Using these dog-bone samples, tensile results showed that the hardness of the
fabricated bioplastic was positively proportional to the ratio of the starch. It is worth noting that the
plasticizing was not able to completely occur with too much percentage of starch. While bioplastics were
currently made with poor mechanical properties compared to petroleum-based resins, their environmental
compatibility and high potential added value promise to be the materials of the future.
Keywords. Bioplastic, Starch extraction, Jack-fruit seed, Plasticizer, Thermoplastic, Environmental
compatibility.

1
[1]

© 2020



Thành


58

NGHIÊN

protein [1].
[2, 3]

[1, 3]

[1]
(CO2
[2].

các lo i polymer s n xu t t tài nguyên có th tái t o [1]
[4, 5]

[4]

[2]

[1, 2]

© 2020

Thành



59

[4]
[4]
chúng.
4

PLA có

[4].
[6, 7]
nh
Favis [8]
[10]

[11]

tác

[12-14]
[15, 16],
[17, 18]

[19, 20]

[2, 21, 22]

[23, 24]


Lan [25]
[26]
ay HDPE.
[27]
phosphate và citrates. Fridman và Sorokina [28]

[29]
[30]
[31]
[32].
t. X. Q. Mo và X. Z. Sun [33]
[34] thì d
[35]
[36]
[1].

© 2020

Thành


60

NGHIÊN

[37, 38].

[39]
-


[41]. Công

[41]
[41].
nhiên [42].

t cao

2 V T LI
2.1 V t li u:
a. H t mít
[2]. Trong

[2]. Hàm l

[2]
ác nhóm hydroxyl
[2].
b. Glycerol
(292

C

© 2020

n hóa q trình lipid hóa (triglyceride) thành acid béo
Thành


61


[1].
c. Acid citric
plasticized thermoplastic starch (SEM).
acid citric (hình 2).
Các
[43].

Hình 2. Liên k t gi a phân t acid citric, glycerol và tinh b t [43]

© 2020

Thành


62

NGHIÊN

cellulose

này
glycerol, polyethylen glycol
[44].
d. Baking soda
3

natri metabisulfite (Na2S2O5
[45].
2.2

,

B ng 1. T l thành ph n nguyên li u các m u nh a

Thành ph n

Tinh b t

Acid citric

Baking Soda

Tinh b t

Glycerol

Tinh b t+Glycerol

Tinh b t+Glycerol

H 2O

3.0:1

1

5

12.5


2.75:1

100

100

100

3.5:1
T l

2.5:1

© 2020

Thành


63
B ng 2. Kh

Thành Ph n

ng nguyên li u các m u nh a

Tinh b t
h t mít
(g)

Glycerol

(g)

Acid citric
(g)

Baking Soda
(g)

H 2O
(g)

M u1

20

5.71

0.25

1.28

160

M u2

20

6.67

0.26


1.33

160

M u3

20

7.27

0.27

1.36

160

M u4

20

8.00

0.28

1.40

160

M u nh a


[16]
0

(SCILOGEX model MS-H-S)

,

0

© 2020

Thành


64

NGHIÊN

Hình 5. Khay nh

c ph lên l p màng PE

Hình 7. Cho khay vào t s y 55 0C

Hình 6. H n h p nh a d

c tráng b ng trên khay

Hình 8. Nh a sinh h c sau khi s y khô


3
U - CAN DYNATEX INC TYPE UT

a. D p c t m u
Hình 9. M

© 2020

Thành

b. M
c d p trên máy

t


65

4

K T QU VÀ TH O LU N
,

M u nh a

t. Nguyên nhân

T l 2.5:1


T l 2.75:1

T l 3.0:1

T l 3.5:1

ng su

3.39

4.34

4.00

5.15

Bi n d

0.29

0.13

0.33

0.25

12.70

33.38


12.43

20.06

29.13

12.60

33.33

25.20

1.375

1.350

1.403

1.410

Thông s

Mô-

i E (MPa)

giãn dài A (%)
T tr ng Density (g/cm3)

© 2020


Thành


66

NGHIÊN

và ngồi

30% glycerol. Cịn c
4.87

5

K T LU N

cellulose
P

© 2020

Thành


67

bên trong,

[1]

[2]

[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

T. Mekonnen, P. Mussone, H. Khalil, and D. Bressler, "Progress in bio-based plastics and plasticizing
modifications," Journal of Materials Chemistry A, vol. 1, pp. 13379-13398, 2013.
R. F. Santana, R. C. F. Bonomo, O. R. R. Gandolfi, L. B. Rodrigues, L. S. Santos, A. C. dos Santos Pires, et
al., "Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol," Journal of
Food Science and Technology, vol. 55, pp. 278-286, 2018.
M. Rosseto, D. D. C. Krein, N. P. Balbé, and A. Dettmer, "Starch gelatin film as an alternative to the use of
plastics in agriculture: a review," Journal of the Science of Food and Agriculture, vol. 99, pp. 6671-6679,
2019.
R. Cho. (2017, 16/01/2020). The truth about bioplastics. Available: />I. D. Posen, P. Jaramillo, A. E. Landis, and W. M. Griffin, "Greenhouse gas mitigation for U.S. plastics
production: energy first, feedstocks later," Environmental Research Letters, vol. 12, p. 034024, 2017.
N. Laohakunjit and A. Noomhorm, "Effect of Plasticizers on Mechanical and Barrier Properties of Rice
Starch Film," Starch - Stärke, vol. 56, pp. 348-356, 2004.
X. Ma and J. Yu, "Formamide as the plasticizer for thermoplastic starch," Journal of Applied Polymer Science,

vol. 93, pp. 1769-1773, 2004.
A. Taghizadeh and B. D. Favis, "Effect of high molecular weight plasticizers on the gelatinization of starch
under static and shear conditions," Carbohydrate Polymers, vol. 92, pp. 1799-1808, 2013.
M. Thunwall, A. Boldizar, M. Rigdahl, and V. Kuthanová, "On the Stress-Strain Behavior of Thermoplastic
Starch Melts," International Journal of Polymer Analysis and Characterization, vol. 11, pp. 419-428, 2006.
R. A. Talja, H. Helén, Y. H. Roos, and K. Jouppila, "Effect of various polyols and polyol contents on physical
and mechanical properties of potato starch-based films," Carbohydrate Polymers, vol. 67, pp. 288-295, 2007.
E. G. Ozdamar and M. Ates, "Rethinking sustainability: A research on starch based bioplastic," Journal of
Sustainable Construction Materials and Technologies, vol. 3, pp. 249-260, 2018.
V. S. Keziah, R. Gayathri, and V. V. Priya, "Biodegradable plastic production from corn starch," Drug
Invention Today, vol. 10, pp. 1315-1317, 2018.
J. F. Mendes, R. T. Paschoalin, V. B. Carmona, A. R. Sena Neto, A. C. P. Marques, J. M. Marconcini, et al.,
"Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion,"
Carbohydrate Polymers, vol. 137, pp. 452-458, 2016.
O. V. López, C. J. Lecot, N. E. Zaritzky, and M. A. García, "Biodegradable packages development from
starch based heat sealable films," Journal of Food Engineering, vol. 105, pp. 254-263, 2011.

© 2020

Thành


68
[15]
[16]

[17]

[18]
[19]


[20]

[21]

[22]

[23]
[24]

[25]
[26]
[27]

[28]
[29]

[30]

[31]

[32]

© 2020

NGHIÊN
E. U. Offiong and S. L. Ayodele, "Preparation and characterization of thermoplastic starch from sweet
potato," International Journal of Scientific & Engineering Research, vol. 7, pp. 438-443, 2016.
A. H. D. Abdullah, S. Pudjiraharti, M. Karina, O. D. Putri, and R. H. Fauziyyah, "Fabrication and
Characterization of Sweet Potato Starch-based Bioplastics Plasticized with Glycerol," Journal of Biological

Sciences, vol. 19, pp. 57-64, 2019.
O. Udensi, E. V. Ikpeme, E. A. Uyoh, and E. A. Brisibe, "Evaluation of Starch Biodegradable Plastics
Derived from Cassava and Their Rates of Degradation in Soil," Nigerian Journal of Biotechnology, vol. 20,
pp. 28-33, 2009.
N. E. Wahyuningtiyas and H. Suryanto, "Analysis of Biodegradation of Bioplastics Made of Cassava Starch,"
Journal of Mechanical Engineering Science and Technology, vol. 1, pp. 24-31, 2017.
M. H. S. Ginting, R. Hasibuan, M. Lubis, F. Alanjani, F. A. Winoto, and R. C. Siregar, "Supply of avocado
starch (Persea americana mill) as bioplastic material," IOP Conference Series: Materials Science and
Engineering, vol. 309, p. 012098, 2018.
L. Maulida, H. M. Bangun, G. M. H. Sahputra, S. Mora, and A. Hidayatul, "Production of bioplastic from
avocado seed starch reinforced with microcrystalline cellulose from sugar palm fibers," Journal of
Engineering Science and Technology, vol. 13, pp. 381-393, 2018.
A. W. M. Kahar, M. Lingeswarran, M. Z. Amirah Hulwani, and H. Ismail, "Plasticized jackfruit seed starch:
a viable alternative for the partial replacement of petroleum-based polymer blends," Polymer Bulletin, vol.
76, pp. 747-762, 2019.
Maulida, M. B. Harahap, Alfarodo, A. Manullang, and M. H. S. Ginting, "Utilization of jackfruit seeds
(Artocarpus heterophyllus) in the preparing of bioplastics by plasticizer ethylene glycol," ARPN Journal of
Engineering and Applied Sciences, vol. 13, pp. 240-244, 2018.
W. Pimpa, C. Pimpa, and P. Junsangsree, "Development of Biodegradable Films Based on Durian Seed
Starch," Advanced Materials Research, vol. 506, pp. 311-314, 2012.
M. H. S. Ginting, R. Hasibuan, M. Lubis, D. S. Tanjung, and N. Iqbal, "Effect of Hydrochloric Acid
Concentration as Chitosan Solvent on Mechanical Properties of Bioplastics from Durian Seed Starch (Durio
Zibethinus) with Filler Chitosan and Plasticizer Sorbitol," IOP Conference Series: Materials Science and
Engineering, vol. 180, p. 012126, 2017.
N. Lopattananon, C. Thongpin, and N. Sombatsompop, "Bioplastics from Blends of Cassava and Rice Flours:
The Effect of Blend Composition," International Polymer Processing, vol. 27, pp. 334-340, 2012.
K. M. Marichelvam, M. Jawaid, and M. Asim, "Corn and Rice Starch-Based Bio-Plastics as Alternative
Packaging Materials," Fibers, vol. 7, 2019.
Z. Stefan, K. Stephan, R. Hans-Joachim, and T. Wodke, "Influence of External Plasticization on Rheological
and Thermal Properties of Cellulose Acetate with Respect to Its Foamability," Journal of Materials Science

& Engineering A, vol. 2, pp. 152-163, 2012.
O. A. Fridman and A. V. Sorokina, "Criteria of efficiency of cellulose acetate plasticization," Polymer
Science Series B, vol. 48, pp. 233-236, 2006.
A. K. Mohanty, A. Wibowo, M. Misra, and L. T. Drzal, "Development of renewable resource based cellulose
acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics," Polymer
Engineering & Science, vol. 43, pp. 1151-1161, 2003.
A. N. Ghebremeskel, C. Vemavarapu, and M. Lodaya, "Use of surfactants as plasticizers in preparing solid
dispersions of poorly soluble API: Selection of polymer surfactant combinations using solubility parameters
and testing the processability," International Journal of Pharmaceutics, vol. 328, pp. 119-129, 2007.
M. Schilling, M. Bouchard, H. Khanjian, T. Learner, A. Phenix, and R. Rivenc, "Application of Chemical
and Thermal Analysis Methods for Studying Cellulose Ester Plastics," Accounts of Chemical Research, vol.
43, pp. 888-896, 2010.
J. Ballany, D. Littlejohn, R. A. Pethrick, and A. Quye, "Probing the Factors That Control Degradation in
Museum Collections of Cellulose Acetate Artefacts," in Historic Textiles, Papers, and Polymers in Museums.
vol. 779, ed: American Chemical Society, 2000, pp. 145-165.

Thành


69
[33]
[34]
[35]

[36]
[37]
[38]
[39]
[40]


X. Mo and X. Sun, "Plasticization of soy protein polymer by polyol-based plasticizers," Journal of the
American Oil Chemists' Society, vol. 79, pp. 197-202, 2002/02/01 2002.
A. Ullah and J. Wu, "Feather Fiber-Based Thermoplastics: Effects of Different Plasticizers on Material
Properties," Macromolecular Materials and Engineering, vol. 298, pp. 153-162, 2013.
M. Pommet, A. Redl, S. Guilbert, and M.-H. Morel, "Intrinsic influence of various plasticizers on functional
properties and reactivity of wheat gluten thermoplastic materials," Journal of Cereal Science, vol. 42, pp. 8191, 2005.
I. Chiulan, A. N. Frone, C. Brandabur, and D. M. Panaitescu, "Recent Advances in 3D Printing of Aliphatic
Polyesters," Bioengineering (Basel, Switzerland), vol. 5, p. 2, 2017.
A. U. B. Queiroz and F. P. Collares-Queiroz, "Innovation and Industrial Trends in Bioplastics," Polymer
Reviews, vol. 49, pp. 65-78, 2009/05/07 2009.
Biostarch. (2019, 18/01/2020).
. Available: />A.
Phát.
(2018,
18/01/2020).
.
Available:
/>P. T. Tri

[41]
[42]
[43]
[44]

[45]

[46]

Y. Jiugao, W. Ning, and M. Xiaofei, "The Effects of Citric Acid on the Properties of Thermoplastic Starch
Plasticized by Glycerol," Starch - Stärke, vol. 57, pp. 494-504, 2005.

P. G. Seligra, C. Medina Jaramillo, L. Famá, and S. Goyanes, "Biodegradable and non-retrogradable ecofilms based on starch glycerol with citric acid as crosslinking agent," Carbohydrate Polymers, vol. 138, pp.
66-74, 2016.
(2018, 13/12/2019). Production Of A Bioplastic Out Of Saba Banana (Musaparadisiaca) Peels And Sweet
Potato
(Ipomoea
Batatas)
With
Sodium
Bicarbonate
As
Plasticizer.
Available:
/>roperties of Bioplastic sheets made from different
-2), pp. 257-264 2016.
10/02/2020
03/06/2020

© 2020

Thành



×