Tải bản đầy đủ (.pdf) (9 trang)

Cung cấp nước sạch cho vùng hạn hán trong điều kiện biến đổi khí hậu khắc nghiệt bằng công nghệ tách ẩm từ không khí

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (958.86 KB, 9 trang )

Hội nghị Khoa học Công nghệ lần thứ 4 - SEMREGG 2018

CUNG CẤP NƯỚC SẠCH CHO VÙNG HẠN HÁN TRONG
ĐIỀU KIỆN BIẾN ĐỔI KHÍ HẬU KHẮC NGHIỆT BẰNG CƠNG NGHỆ
TÁCH ẨM TỪ KHƠNG KHÍ
Lý Cẩm Hùng*1, Hồng Trung Ngơn2, Lê Văn Lữ1, Lê Hữu Quỳnh Anh1, Phan Đình Tuấn1
Trường Đại học Tài ngun và Mơi trường Thành phố Hồ Chí Minh,
236B Lê Văn Sỹ, Phường 1, quận Tân Bình, Thành phố Hồ Chí Minh

1

2

Trường Đại học Bách khoa - Đại học Quốc gia Thành phố Hồ Chí Minh,
268 Lý Thường Kiệt, Quận 10, Thành phố Hồ Chí Minh
*
Email:
TĨM TẮT

Việt Nam là một trong các quốc gia chịu ảnh hưởng nặng nề của biến đổi khí hậu. Trong
những năm gần đây, hạn hán trở nên khắc nghiệt hơn, đặc biệt ở miền Nam Trung Bộ như Ninh
Thuận, Tây Nguyên,… Trong bối cảnh đó, việc cung cấp nước để phục vụ đời sống và sản xuất là
một nhu cầu tự nhiên của người dân vùng hạn hán. Có nhiều cơng nghệ có thể ứng dụng để cung
cấp nước uống và sản xuất cho người dân, như vận chuyển nước từ các vùng xa, làm ngọt hóa nước
biển, khai thác nước ngầm,… Các phương án này đều đã được nghiên cứu nhưng tính khả thi thấp,
khơng hiệu quả kinh tế. Việc tách ẩm từ khơng khí được đề xuất như một giải pháp tiên tiến, vì khả
năng cung cấp vơ tận và trong mọi điều kiện. Cơng trình này trình bày các kết quả tính tốn, thiết kế
hệ thống cung cấp nước uống nhờ tách ẩm từ khơng khí cho vùng Ninh Thuận với công suất thử
nghiệm 200L/ngày, kèm theo hệ thống cung cấp năng lượng mặt trời có khả năng hịa lưới điện và
cung cấp công suất dư vào lưới như một giải pháp đáp ứng nhu cầu của người dân, đặc biệt ở vùng
sâu, vùng xa nơi có khó khăn trong việc tiếp cận lưới điện quốc gia.


Từ khóa: Nước sạch, hạn hán, cơng nghệ tách ẩm, biến đổi khí hậu.
1. MỞ ĐẦU
Nước là tài nguyên đặc biệt quan trọng, là thành phần thiết yếu của môi trường và là một trong
những yếu tố quyết định sự tồn tại của sự sống, sự phát triển của một vùng, quốc gia, khu vực và
toàn thế giới. Hiện nay, trong bối cảnh hạn hán do biến đổi khí hậu, hiện tượng xâm nhập mặn đang
xảy ra tại nhiều quốc gia, nguy cơ thiếu nước, đặc biệt là nước ngọt và sạch là một hiểm họa lớn đối
với sự tồn vong của con người cũng như toàn bộ sự sống trên Trái đất.
Việt Nam là một trong các quốc gia chịu ảnh hưởng nặng nề của biến đổi khí hậu. Trong
những năm gần đây, hạn hán trở nên khắc nghiệt hơn, đặc biệt ở miền Nam Trung Bộ như Ninh
Thuận, Tây Nguyên,… Trong bối cảnh đó, việc cung cấp nước để phục vụ đời sống và sản xuất là
một nhu cầu tự nhiên của người dân vùng hạn hán.
Có nhiều cơng nghệ có thể ứng dụng để cung cấp nước uống và sản xuất cho người dân, như
vận chuyển nước từ các vùng xa, làm ngọt hóa nước biển, khai thác nước ngầm,… Các phương án
này đều đã được nghiên cứu nhưng tính khả thi thấp, không hiệu quả kinh tế. Việc tách ẩm từ khơng
khí được đề xuất như một giải pháp tiên tiến, vì khả năng cung cấp vơ tận và trong mọi điều kiện.
Các nghiên cứu loại này đã được thực hiện bởi nhiều nhóm nghiên cứu trên thế giới [2-4]. Tại Mỹ,
công nghệ này đã được nghiên cứu, phát triển và đăng ký bản quyền từ rất sớm vào những năm
1


The fourth Scientific Conference - SEMREGG 2018
1970 [5,6]. Harrison [7] đã phát triển công nghệ tách ẩm bằng phương pháp ngưng tụ, với công suất
thu được 9-18 L /ngày. Poindexter [8] đã kết hợp hệ thống làm lạnh bằng nước và hệ thống làm lạnh
bằng khí trong cùng một thiết kế, đồng thời xử lý nước bằng đèn UV diệt khuẩn, đạt được công suất
11 L/ngày. Cùng thời điểm này, công suất lớn hơn đã được sản xuất thử nghiệm quy mơ phịng thí
nghiệm bởi Hellstrom và đạt được 50-170 L/ngày [9].
Để có thể tách ẩm từ khơng khí, đặc biệt trong điều kiện nhiệt độ cao, độ ẩm thấp ở các vùng
hạn hán, khối khơng khí địi hỏi phải được làm lạnh đến và dưới nhiệt độ điểm sương tương ứng,
tạo điều kiện để hơi ẩm tách ra thành giọt. Tiếp đó, các giọt sương này phải được tạo điều kiện để
kết tụ lại thành giọt lớn, được dẫn theo bề mặt nhám để tạo thành dòng đi vào nơi chứa. Để loại

nước tách từ khơng khí này có thể sử dụng làm nước uống, nó phải được làm sạch khỏi bụi, vi
khuẩn, các chất độc hại hòa tan và phải được khống hóa để có các tính chất đáp ứng tiêu chuẩn
nước uống của Bộ Y tế.
Trong phạm vi nghiên cứu của bài báo này, nhóm nghiên cứu đã tiến hành tính tốn, thiết kế,
chế tạo và vận hành hệ thống thiết bị tách ẩm từ khơng khí công suất 200 L/ngày sử dụng năng
lượng mặt trời nhằm đáp ứng nhu cầu sinh hoạt của người dân tại tỉnh Ninh Thuận.
2. ĐỐI TƢỢNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU
2.1. Đối tƣợng và khu vực nghiên cứu
Khơng khí ở các điều kiện độ ẩm và nhiệt độ khác nhau được nghiên cứu để tách nước sử dụng
hệ thống làm lạnh tách ẩm được nhóm nghiên cứu thiết kế và chế tạo. Thiết bị được chế tạo có cơng
suất thiết kế là 200 L/ngày, được đặt tại Trường Tiểu học Văn Lâm, thành phố Phan Rang- Tháp
Chàm, tỉnh Ninh Thuận, nhằm thử nghiệm các điều kiện vận hành tối ưu, giúp cho việc cải tiến và
hoàn thiện hệ thống, đồng thời cung cấp nước uống cho học sinh, thầy cô giáo và các hộ dân ở gần,
như một giải pháp nhằm giảm thiểu tác động của biến đổi khí hậu đối với vùng hạn hán này.
2.2 Phƣơng pháp nghiên cứu
Nhóm nghiên cứu áp dụng biểu đồ Ramzin mô tả quan hệ Enthalpy - độ ẩm của khơng khí ẩm
đã được cơng bố trên thế giới để nghiên cứu, tính tốn từng chế độ làm việc theo điều kiện thực của
vùng hạn hán nơi đặt thiết bị. Từ đó, cơng việc xây dựng và thiết kế chế độ làm việc, cùng với quy
trình vận hành thiết bị được xem xét để đảm bảo đáp ứng yêu cầu cung cấp nước và tiết kiệm năng
lượng nhất.
Bên cạnh đó, các thành tựu về quy luật cũng như hiệu suất chuyển đổi điện 1 chiều thành điện
xoay chiều, trang bị thiết bị đo công suất tiêu thụ cũng như cơng suất điện hịa lưới đã được nghiên
cứu, lắp đặt và vận hành để phục vụ công tác thiết kế, chế tạo bộ biến đổi inverter dùng trong việc
sử dụng nguồn năng lượng mặt trời để cung cấp năng lượng vận hành hệ thống tách ẩm, hòa lưới
điện, nhằm tiết kiệm điện năng sử dụng cho nhà trường.
3. KẾT QUẢ VÀ THẢO LUẬN
3.1. Tính tốn các điều kiện tách ẩm
3.1.1. Giản đồ Mollier của khơng khí ẩm
Đồ thị I-d biểu thị mối quan hệ của các đại lượng t, φ, I, d và pbh của không khí ẩm. Đồ thị
được Giáo sư L. K. Ramzin (Nga) xây dựng năm 1918 và sau đó được Giáo sư Mollier (Đức) lập

năm 1923. Nhờ đồ thị này ta có thể xác định được tất cả các thơng số cịn lại của khơng khí ẩm khi
biết 2 thơng số bất kỳ [11] lấy tại hiện trường dự kiến lắp đặt thiết bị. Các thơng số sử dụng cho tính
2


Hội nghị Khoa học Công nghệ lần thứ 4 - SEMREGG 2018
tốn được lấy theo giá trị trung bình theo tháng, theo năm, ứng với các thời điểm khác nhau trong
ngày và đêm.
3.1.2. Tính tốn điều kiện tách ẩm cho trường hợp điển hình
- Nhiệt độ khơng khí ban đầu (trước khi vào thiết bị tách ẩm) vào mùa hè, khi nhiệt độ lên cao
nhất là T1 = 27 oC, độ ẩm là 75 % (điểm A1, Hình 1),
- Từ giản đồ Mollier, ta có hàm ẩm d1 = 17 g H2O/kg kkk,
- Khơng khí ra khỏi thiết bị tách ẩm ở nhiệt độ điểm sương là T2 = 20 oC, khơng khí ở trạng
thái bão hịa, từ giản đồ Mollier ta tra được hàm ẩm d2 = 14,8 g H2O/ kg kkk (điểm A2),
- Lượng nước ta thu được sẽ là 17 - 14,8 = 2,2 g H2O/ kg kkk.
Khối lượng riêng của khơng khí khơ phụ thuộc vào nhiệt độ:
(

)

gl

Trong đó: t là nhiệt độ (oC)
P là áp suất, P = 760 mmHg
Ở 27 C, P = 760 mmHg, khối lượng riêng của khơng khí khơ là 1,18 kg/m3.
o

Hình 1. Giản đồ Mollier của khơng khí ẩm.
Khối lượng khơng khí khơ (X) được tính dựa trên quy tắc tỷ lệ thuận.
Lưu lượng khơng khí cấp vào chính bằng tỷ lệ giữa khối lượng khơng khí khơ trên cho khối

lượng riêng của khơng khí khơ tương ứng với nhiệt độ tại điểm ta xét.
Vậy lưu lượng khơng khí khơ bằng:

77.041 m3 khơng khí khơ.

3


The fourth Scientific Conference - SEMREGG 2018
Tương tự, kết quả tính tốn cho các điều kiện tách ẩm được trình bày trong Bảng 1, trong đó
khơng khí trước khi vào hệ thống thiết bị tách ẩm có nhiệt độ T1 từ 20-40 oC với độ ẩm trong
khoảng từ 50-100 %, khơng khí ra khỏi thiết bị được tính cho các trường hợp T2 từ 5-35 oC.
3.2. Tính tốn và lựa chọn các thiết bị chính trong hệ thống tách ẩm công suất 200 L/ngày
3.2.1. Sơ đồ công nghệ của hệ thống tách ẩm
Từ các kết quả tính tốn và các thơng số được tính chọn, sơ đồ cơng nghệ cho hệ thống tách
ẩm thí nghiệm với năng suất 200 L/ngày được đề xuất như Hình 2. Hệ thống bao gồm dàn lạnh, dàn
nóng, thiết bị lọc nước và có bao gồm hệ thống pin năng lượng mặt trời để cung cấp năng lượng cho
tồn hệ thống hoạt động.

Hình 2. Sơ đồ cơng nghệ hệ thống tách ẩm 200 L/h.
3.2.2. Tóm tắt các bước tính tốn và lựa chọn các thiết bị chính trong hệ thống tách ẩm
Dựa trên các kết quả thu được từ việc tính tốn các điều kiện cho q trình tách ẩm, nhóm
nghiên cứu đã tiến hành tính tốn chi tiết và lựa cho các thiết bị phụ trợ phục vụ mục tiêu tách ẩm từ
khơng khí với yêu cầu tối thiểu đạt công suất 200 L/ngày. Tóm tắt các bước tính tốn và lựa chọn
các thiết bị chính trong hệ thống tách ẩm được thực hiện như sau:
- Tính tốn kết cấu dàn lạnh
Xác định chu trình nhiệt thực tế của quá trình làm lạnh tách ẩm.
Chọn kết cấu dàn lạnh: bề mặt truyền nhiệt của dàn lạnh là chùm ống đồng bố trí so le,
Tính tốn đường kính ngồi, đường kính trong của ống trao đổi nhiệt, bước cách, bề dày
cánh, bước ống, tỉ số nhiệt ẩm,

Tính tốn diện tích cánh của 01 cánh, khoảng cách giữa các cánh tản nhiệt, tổng diện tích
cánh tản nhiệt,
Xác định hệ số tỏa nhiệt, hệ số dẫn nhiệt của khơng khí,
Tính tốn xác định số cụm ống, chiều dài cánh, chiều cao cánh.
Tính tốn kiểm tra lại lưu lượng khơng khí qua dàn lạnh, thể tích khơng khí và diện tích bề
mặt truyền nhiệt.

4


Hội nghị Khoa học Công nghệ lần thứ 4 - SEMREGG 2018
- Tính tốn kết cấu dàn nóng
Chọn dàn nóng loại ống đồng - cánh nhôm đối lưu cưỡng bức,
Xác định cơng suất giải nhiệt, đường kính ngồi, đường kính trong, đường kính cánh, bước
cách, bề dày cánh, bước ống,
Tính nhiệt độ trung bình của khơng khí khi qua dàn ngưng,
Tra cứu các thơng số vật lý của khơng khí ở điều kiện làm việc, từ đó tính tốn xác định lưu
lượng khơng khí cần thiết để giải nhiệt bình ngưng,
Tính tốn diện tích cánh, diện tích khoảng giữa các cánh, tổng diện tích bề mặt của ống, tổng
chiều dài ống, đường kính trong và đường kính ngồi của thiết bị.
- Tính tốn hệ thống cấp điện năng lượng mặt trời
Tính tốn cơng suất tiêu thụ của hệ thống bao gồm, dàn lạnh, dàn nóng và hệ thống lọc nước
RO.
Tính tốn tổng số W/h tồn tải, số W/h các tấm pin mặt trời,
Tính tốn xác định tổng số Wp của tấm pin mặt trời, số lượng tấm pin mặt trời cần dùng.
3.2.3. Kết quả tính tốn các chi tiết trong hệ thống thiết bị tách ẩm công suất 200 L/ngày
Kết quả chính phần tính tốn dàn lạnh, dàn nóng và hệ thống cấp điện năng lượng mặt trời
được liệt kê trong Bảng 1.
Bảng 1. Kết quả tính tốn các thơng số của hệ thống.
Kích thước


Đơn vị

Diện tích bề mặt truyền nhiệt

1,30

m2

Lượng khơng khí đi qua dàn lạnh

1,05

kg/s

Thể tích khơng khí đi qua dàn lạnh

0,90

m3/s

Diện tích cho khơng khí đi qua

0,26

m2

Chiều dài ống trong một cụm ống

1,50


m

Số cụm ống

8

Cụm

Số ống

32

ống

Thể tích khơng khí giải nhiệt

3,75

m3/s

Tổng diện tích bề mặt trong của thiết bị

4,01

m2

145,13

m


105

ống

Tổng số W/h toàn tải sử dụng

39,52

Wh

Tổng số Wp của tấm pin mặt trời

4,11

Wp

1580 x 808 x 35

mm

60

Tấm

Thông số
Dàn lạnh

Dàn nóng


Tổng chiều dài ống
Số ống
Hệ thống cấp điện năng lượng mặt trời

Kích thước mỗi tấm pin
Số lượng tấm pin mặt trời cần dùng

5


The fourth Scientific Conference - SEMREGG 2018
3.3. Thiết kế chi tiết, chế tạo, lắp đặt, vận hành thử nghiệm hệ thống tách ẩm công suất 200 L/ngày
3.3.1. Chi tiết thiết kế cụm thiết bị tách ẩm

Hình 3. Bảng vẽ chi tiết cụm thiết bị tách ẩm.
3.3.2. Chi tiết thiết bị tách ẩm đã được chế tạo

Hình 4. Mơ hình hệ thống thiết bị tách ẩm năng suất 200 L/ngày.
Mơ hình thiết bị được chuyển quy mô từ hệ thống pilot 10 L/ngày [13] (xem Hình 4, Hình 5).
Do thiết bị công suất lớn, nguồn điện được thiết kế 3 pha, cho cơng suất thiết kế 5 kW. Ngồi ra, để
tiết kiệm việc sử dụng ắc quy chi phí cao và có khả năng tạo rác thải tứ cấp, gây ơ nhiễm môi
trường sau khi hết hạn sử dụng, hệ thống đã được cải tiến bằng cách bố trí bộ chuyển đổi inverter,
có khả năng biến đổi trực tiếp điện 1 chiều 80 V thành điện xoay chiều 220 V nối lưới, sau đó
6


Hội nghị Khoa học Công nghệ lần thứ 4 - SEMREGG 2018
chuyển đổi thành dòng 3 pha chạy máy. Bằng thiết kế này, hệ thống điện mặt trời vừa cung cấp
năng lượng cho máy tách ẩm, vừa có khả năng phát công suất dư lên lưới điện, giúp người sử dụng
tiết kiệm năng lượng cũng như góp phần cung cấp năng lượng tái tạo vào nguồn điện quốc gia.


Hình 5. Mơ hình hệ thống năng lượng mặt trời cơng suất 5 kW phục vụ thiết bị tách ẩm
năng suất 200 L/ngày.
3.3.3. Kết quả vận hành thử nghiệm hệ thống tách ẩm công suất 200 L/ngày
Hệ thống tách ẩm công suất 200 L/ngày được vận hành thử nghiệm với nhiệt độ khơng khí đầu
vào là 29,5 oC và độ ẩm khơng khí là 54,5 %. Các thơng số cần đo đạt khảo sát là lượng nước thu
được và điện năng tiêu thụ theo thời gian.
Lưu lượng tức thời,
mL/phút

600
500
400
300
200
100
0
0

20

40

60
80
100
Thời gian vận hành, phút

120


140

160

Hình 6. Lưu lượng nước thu được theo thời gian của hệ thống tách ẩm 200 L/ngày.
Hình 6 biểu diễn lưu lượng nước thu được theo thời gian. Cứ mỗi 5 phút, nhóm nghiên cứu lại
thực hiện việc lấy mẫu và đo lượng nước thu được. Sau đó tính lưu lượng nước thu được theo thời
gian, kết quả cho thấy rằng trong khoảng thời gian đầu khi khởi động, thiết bị sẽ phải cần thời gian
khoảng 16 phút mới bắt đầu thu được nước. Đến phút thứ 30, lưu lượng nước thu được có thể đạt
được 500 ml/phút. Trong khoảng thời gian khảo sát là 150 phút, lưu lượng nước thu được dao động
trong khoảng từ 450 đến 600 ml/phút, tương đương với khoảng 216 đến 288 L/ngày. Như vậy, hệ
thống đã hoạt động đạt năng suất trung bình khoảng 250 L/ngày (tính cho thời gian vận hành
8 h/ngày vào thời gian có nắng), đảm bảo hồn tồn u cầu ban đầu khi thiết kế hệ thống là
200 L/ngày.
7


The fourth Scientific Conference - SEMREGG 2018

,600

500

,500

Lưu lượng tức thời,
mL/phút

600


400

,400

300

,300

200

,200

100

,100

0

,0
0

20

40
60
80
100
Thời gian vận hành, phút

120


140

Năng lượng tiêu thụ theo
thời gian vận hành, kWh
(x40)

Lượng điện năng tiêu thụ của hệ thống được ghi nhận và kết quả đo được trình bày trong Hình 7.
Kết quả cho thấy hệ thống hoạt động với công suất điện năng tiêu thụ khoảng 4,8 -5,4 kW, tương
ứng 40,8 kWh trong 1 ngày. Như vậy, cứ mỗi ngày vận hành hệ thống có thể tạo ra khoảng 250 lít
nước và tiêu thụ khoảng 40,8 kWh điện, tương đương 100 ngàn đồng (tính theo biểu giá điện sinh
hoạt, có yếu tố lũy tiến, do Điện lực Việt Nam quy định [12]).

160

Hình 7. Cơng suất tiêu thụ điện của hệ thống tách ẩm 200 L/ngày.
4. KẾT LUẬN
Thiết bị tách ẩm với công suất 200 L/ngày sử dụng cả 2 nguồn điện (nguồn điện từ lưới điện
quốc gia và nguồn điện từ pin năng lượng mặt trời) đã được nghiên cứu, thiết kế, chế tạo, lắp đặt và
vận hành thành công. Kết luận về điều kiện vận hành: Với độ ẩm 54,5 % và nhiệt độ khơng khí
ngồi trời là 29,5 oC, thiết bị sản xuất được trung bình 250 lít nước sạch trong khoảng thời gian một
ngày (8h), tiêu thụ hết 40,8 kWh điện.
Lời cảm ơn: Các tác giả xin cảm ơn sự Bộ Khoa học và Công nghệ, Bộ Tài ngun và Mơi
trường và Chương trình Khoa học và Cơng nghệ Ứng phó với biến đổi khí hậu, Quản lý tài nguyên
và môi trường giai đoạn 2016-2020, mã số BĐKH/16-20 đã hỗ trợ kinh phí cho đề tài
BDKH.06/16-20 để thực hiện cơng trình này.
TÀI LIỆU THAM KHẢO
1. - Biến đổi khí hậu làm trầm trọng tình trạng sa mạc hóa, 24/6/2016.
2. Wahlgren R. V. (1993) - Atmospheric water vapour proces-sing. Waterlines 12(2), 20±22.
3. Beysens D. A., Milimouk I. and Nikolayev V. (1998) - Dew recovery: old dreams and actual

results. In Proceedings: First International Conference on Fog and Fog Collection, Vancouver,
Canada, 19±24 July 1998, eds R. S. Scheme- nauer and H. Bridgman, pp. 269±272.
4. Gerard R. D. and Worzel J. L. (1972) - Atmospheric water extraction over the ocean, Beneficial
Modifcations of the Marine Environment. Proceedings of Symposium Sponsored by National
Research Council and Dept. of the Interior, Washington, DC, National Academy of Sciences,
66±84.
5. Groth W. and Hussmann P. (1979) - Process and system for recovering water from the
atmosphere. United States Patent 4,146,372.
6. Lund B. G. A. (1973) - Extracting water from the atmosphere. United States Patent 3,777,456.

8


Hội nghị Khoa học Công nghệ lần thứ 4 - SEMREGG 2018
7. Harrison L. G. (1996) - Water recovery device for reclaiming and re®ltering atmospheric water.
United States Patent 5,553,459.
8. Poindexter F. (1994) - Potable water collection apparatus. United States Patent 5,301,516.
9. HellstroÈm B. (1969) - Potable water extracted from the air report on laboratory experiments.
Journal of Hydrology 9, 1-19.
10. Peters G. M., Blackburn N. J., Armedion M. (2013) - Environmental assessment of air to water
machines-triangulation to manage scope uncertainty. Int J Life Cycle Assess 18:1149-1157
11. Nguyễn Đức Hùng và Nguyễn Minh Thái - Kỹ thuật xử lý khơng khí ẩm. Nhà xuất bản Khoa
học và Kỹ thuật Hà Nội, 2007.
12. Tập đoàn Điện lực Việt Nam - Biểu giá bán lẻ điện- />13. Lý Cẩm Hùng, Lê Văn Lữ, Lê Hữu Quỳnh Anh, Phan Đình Tuấn - Thiết bị tách ẩm từ khơng
khí cơng suất 10 L/ngày phục vụ nhu cầu sinh hoạt của người dân, Báo cáo toàn văn Hội nghị
sơ kết Chương trình Khoa học cơng nghệ ứng phó với biến đổi khí hậu, quản lý tài ngun và
môi trường giai đoạn 2016-2020, Hà Nội, 2018.
SUPPLY OF DRINKING WATER FOR DROUGHT AREAS IN THE SITUATION OF
SEVERE CLIMATE CHANGE BY HUMIDITY SEPERATION FROM THE AIR
Ly Cam Hung *1, Hoang Trung Ngon2, Le Van Lu1,

Le Huu Quynh Anh1, Phan Dinh Tuan1
1

Hochiminh City University of Natural Resources and Environment,
236B Le Van Sy, Tan Binh district, Hochiminh City

2

Hochiminh City University of Technology - VNU Hochiminh City,
268 Ly Thuong Kiet St., District 10, Hochiminh City
*

Email:
ABSTRACT

Vietnam belongs to the countries which are under heavy influence of climate change. In recent
years, the drought has become more severe, especially in the South of Middle Vietnam, such as
Ninh Thuan, Tay Nguyen etc. In the circumstances, the supply of drinking water for normal life and
production becomes a natural demand of people in the drought areas.
There are many available technologies to be applied to supply people with water for drinking and
production purposes. Nevertheless, the variants have been carefully investigated, and appreared to be
low feasibility, non-economic efficient. The humidity separation from the air is proposed as an
advantaged solution for its endless supply capacity and implementation ability in numerous conditions.
The article describes the results of calculation and design of a system, which helps to supply
drinking water from the air for Ninh Thuan area, with a capacity of about 200 L/day. It is
accompanied with the solar energy system that is ready for system operation, as a method to supply
electrical energy to the national electrical network and to the demand of people, especially in the far
and remote areas where the access to the national electrical network is not easy at all.
Keywords: Drinking water, drought, humidity separation, climate change.
9




×