Tải bản đầy đủ (.pdf) (8 trang)

Formulae involving ∇ Vector Identities with Proofs: Nabla Formulae for Vector Analysis李国华 doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (86.93 KB, 8 trang )


1

Formulae involving ∇
Vector Identities with Proofs: Nabla Formulae for Vector Analysis

李国华 (Kok-Wah LEE) @ 08 May 2009 (Version 1.0)
No. 4, Jalan Bukit Beruang 5, Taman Bukit Beruang, 75450 Bukit Beruang, Melaka, Malaysia.
Email: ;
Tel.: +6013-6134998; +606-2312594; +605-4664998
www.xpreeli.com

All rights reserved.

Vector: A = A
1
i + A
2
j + A
3
k B = B
1
i + B
2
j + B
3
k C = C
1
i + C
2
j + C


3
k
Scalar:
φ
=
φ
(x,y,z)
ψ
=
ψ
(x,y,z)
Nabla:
z
k
y
j
x
i


+


+


=∇


(1) (A x B).C ≡ (B x C).A ≡ (C x A).B


(2) A x (B x C) ≡ (A.C)B - (A.B)C

(3) Prove ∇(
φ
+
ψ
) = ∇
φ
+ ∇
ψ


( )
(
)
(
)
(
)
k
z
j
y
i
x
k
z
j
y

i
x ∂
+∂
+

+∂
+

+∂
=+










+


+


ψφψφψφ
ψφ

=

k
z
k
z
j
y
j
y
i
x
i
x ∂

+


+


+


+


+


ψ
φ

ψ
φ
ψ
φ

=










+


+


+











+


+


k
z
j
y
i
x
k
z
j
y
i
x
ψψψφφφ

=
ψφ











+


+


+










+


+


k
z

j
y
i
x
k
z
j
y
i
x

∴ ∇(
φ
+
ψ
) = ∇
φ
+ ∇
ψ



(4) Prove ∇(
φ

ψ
) =
φ

ψ

+
ψ

φ


( )
(
)
(
)
(
)
k
z
j
y
i
x
k
z
j
y
i
x ∂

+


+



=










+


+


φψφψφψ
φψ


2

= k
x
k
x
j

x
j
x
i
x
i
x


+


+


+


+


+


φ
ψ
ψ
φ
φ
ψ

ψ
φ
φ
ψ
ψ
φ

=










+


+


+











+


+


k
z
j
y
i
x
k
z
j
y
i
x
φφφ
ψ
ψψψ
φ

=
φψψφ











+


+


+










+



+


k
z
j
y
i
x
k
z
j
y
i
x

∴ ∇(
φ

ψ
) =
φ

ψ
+
ψ

φ




(5) Prove ∇.(A + B) = ∇.A + ∇.B

( ) ( ) ( )
[ ]
kBAjBAiBAk
z
j
y
i
x
BA
332211
).( +++++










+


+



=+∇

=
(
)
(
)
(
)
z
BA
y
BA
x
BA

+

+

+

+

+

332211
= LHS

( ) ( )

kBjBiBk
z
j
y
i
x
kAjAiAk
z
j
y
i
x
BA
321321
++










+


+



+++










+


+


=∇+∇

=
z
B
y
B
x
B
z
A
y

A
x
A


+


+


+


+


+


321321

=
(
)
(
)
(
)
z

BA
y
BA
x
BA

+

+

+

+

+

332211
= RHS
LHS = RHS
∴ ∇.(A + B) = ∇.A + ∇.B


(6) Prove ∇x(A + B) = ∇xA + ∇xB

( ) ( ) ( )
[ ]
kBAjBAiBAxk
z
j
y

i
x
BAx
332211
)( +++++










+


+


=+∇

=
332211
BABABA
zyx
kji
+++








=
(
)
(
)
(
)
(
)
(
)
(
)
k
y
BA
x
BA
j
z
BA
x
BA
i

z
BA
y
BA









+∂


+∂
+







+∂


+∂











+∂


+∂
112211
33
22
33


3

=




















+


























+



















+


























k
y
B
x
B
j
z

B
x
B
i
z
B
y
B
k
y
A
x
A
j
z
A
x
A
i
z
A
y
A
121323121323

=
321
AAA
zyx
kji







+
321
BBB
zyx
kji







∴ ∇x(A + B) = ∇xA + ∇xB


(7) Prove ∇.(
φ
A) = (∇
φ
).A +
φ
(∇.A)

( )

kAjAiAk
z
j
y
i
x
A
321
.).(
φφφφ
++










+


+


=∇

=

(
)
(
)
(
)
z
A
y
A
x
A


+


+


321
φ
φ
φ
= LHS
( ) ( ) ( )







++










+


+


+++











+


+


=∇+∇ kAjAiAk
z
j
y
i
x
kAjAiAk
z
j
y
i
x
AA
321321
).(
φ
φφφ
φφ

=











+


+


+










+


+


z

A
y
A
x
A
z
A
y
A
x
A
321
321
φ
φφφ

=








+


+











+


+








+


z
A
z
A
y
A

y
A
x
A
x
A
3
3
2
2
1
1
φ
φ
φ
φ
φ
φ

=
(
)
(
)
(
)
z
A
y
A

x
A


+


+


321
φφφ
= RHS
LHS = RHS
∴ ∇.(
φ
A) = (∇
φ
).A +
φ
(∇.A)


(8) Prove ∇x(
φ
A) = (∇
φ
)xA +
φ
(∇xA)

( )
321
AAA
zyx
kji
Ax
φφφ
φ






=∇

=
(
)
(
)
(
)
(
)
(
)
(
)
k

y
A
x
A
j
z
A
x
A
i
z
A
y
A













+


























121323
φφφφφφ

=
k
y
A

y
A
x
A
x
A
j
z
A
z
A
x
A
x
A
i
y
A
y
A
y
A
y
A

















+


+














+




















+


φ
φ
φ
φ
φ
φ
φ
φ
φ

φ
φ
φ
1
1
2
2
1
1
3
3
2
2
3
3
=




















+


























k
y
A
x
Aj
z
A
x
Ai
y
A
y
A
φφφφφφ
121323


4























+




























+ k
y
A
x
A
j
z
A
x
A
i
y
A
y
A
121323
φφφφφφ

=
321
AAA

zyx
kji






φφφ
+
321
AAA
zyx
kji






φ

∴ ∇x(
φ
A) = (∇
φ
)xA +
φ
(∇xA)



(9) Prove ∇.(AxB) = B.(∇xA) - A.(∇xB)

321
321
.).(
BBB
AAA
kji
k
z
j
y
i
x
AxB










+


+



=∇

=
( ) ( ) ( )
[ ]
kBABAjBABAiBABAk
z
j
y
i
x
122113312332
. −+−−−










+


+




=
(
)
(
)
(
)
z
BABA
y
BABA
x
BABA

−∂
+

−∂


−∂
122113312332

( )




















+


























++=∇ k
y
A
x
A
j
z
A
x
A
i
z
A
y
A
kBjBiBxAB
121323
321
.).(


=













+


























y
A
x
A
B
z
A
x
A
B
z
A
y
A
B
12
3
13
2

23
1

Similarly, by interchanging the variable of A and B, we have
( )



















+


























++=∇ k
y
B
x
B
j
z
B
x
B

i
z
B
y
B
kAjAiAxBA
121323
321
.).(

=













+


























y
B
x
B
A
z
B
x
B
A

z
B
y
B
A
12
3
13
2
23
1

B.(∇xA) - A.(∇xB) =








+












+













+


x
B
A
x
A
B
z
B
A
z

A
B
y
B
A
y
A
B
2
3
3
2
1
2
2
1
1
3
3
1













+











+


+








+


+

y
B
A
y
A
B
x
B
A
x
A
B
z
B
A
z
A
B
3
1
1
3
3
2
2
3
2
1
1
2


=
(
)
(
)
(
)
(
)
(
)
(
)
y
BA
x
BA
z
BA
x
BA
z
BA
y
BA






+


+








313221231213

=
(
)
(
)
(
)
z
BABA
y
BABA
x
BABA




+







122113312332

∴ ∇.(AxB) = B.(∇xA) - A.(∇xB)


5


(10) Prove ∇x(AxB) = (B.∇)A - B(∇.A) - (A.∇)B + A(∇.B)
( ) ( ) ( ) ( )
[ ]
kBABAjBABAiBABAx
BBB
AAA
kji
xAxBx
122113312332
321
321
−+−−−∇=∇=∇


=
122131132332
BABABABABABA
zyx
kji
−−−







=
(
)
(
)
(
)
(
)
(
)
(
)
k
y
BABA
x

BABA
j
z
BABA
x
BABA
i
z
BABA
y
BABA









−∂


−∂
+








−∂


−∂










−∂


−∂
233231132332122131131221

= LHS

(B.∇)A - B(∇.A) =
( ) ( )
kBjBiB
z
A
y

A
x
A
kAjAiA
z
B
y
B
x
B
321
321
321321
++










+


+



−++










+


+



=
k
y
A
B
x
A
B
y
A
B
x

A
Bj
z
A
B
x
A
B
z
A
B
x
A
Bi
z
A
B
y
A
B
z
A
B
y
A
B

















+


+















+


+
















+


2
3
1
3
3
2
3

1
3
2
1
2
2
3
2
1
3
1
2
1
1
3
1
2


Similarly, by interchanging the variable of A and B, we have
(A.∇)B - A(∇.B) =
( ) ( )
kAjAiA
z
B
y
B
x
B
kBjBiB

z
A
y
A
x
A
321
3
21
321321
++










+


+


−++











+


+



=
k
y
B
A
x
B
A
y
B
A
x
B
Aj
z

B
A
x
B
A
z
B
A
x
B
Ai
z
B
A
y
B
A
z
B
A
y
B
A

















+


+














+



+
















+


2
3
1
3
3
2
3
1
3
2

1
2
2
3
2
1
3
1
2
1
1
3
1
2

(B.∇)A - B(∇.A) - (A.∇)B + A(∇.B)
=
i
z
B
A
z
A
B
y
B
A
y
A
B

z
B
A
z
A
B
y
B
A
y
A
B














+














+











+


+











+


1
3
3
1
1
2
2
1
3
1
1
3
2
1
1
2


j
z
B

A
z
A
B
x
B
A
x
A
B
z
B
A
z
A
B
x
B
A
x
A
B















+











+












+


+








+


+
2
3
3
2
2
1
1
2
3
2
2
3
2
1

2
1


k
y
B
A
y
A
B
x
B
A
x
A
B
y
B
A
y
A
B
x
B
A
x
A
B

















+











+














+


+








+


+
3
2
2

3
3
1
1
3
2
3
3
2
1
3
3
1

=
(
)
(
)
(
)
(
)
(
)
(
)
k
y
BABA

x
BABA
j
z
BABA
x
BABA
i
z
BABA
y
BABA









−∂
+

−∂
+








−∂
+

−∂










−∂
+

−∂
322331133223122113311221

=
(
)
(
)
(
)

(
)
(
)
(
)
k
y
BABA
x
BABA
j
z
BABA
x
BABA
i
z
BABA
y
BABA










−∂


−∂
+







−∂


−∂










−∂


−∂

233231132332122131131221

= RHS

RHS = LHS

6

∴ ∇x(AxB) = (B.∇)A - B(∇.A) - (A.∇)B + A(∇.B)


(11) Prove ∇(A.B) = (B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB)
∇(A.B) =
( )
332211
BABABAk
z
j
y
i
x
++











+


+


= LHS
(B.∇)A =
( )
kAjAiA
z
B
y
B
x
B
321321
++











+


+



( )



















+


























++=∇ k
y
A
x
A
j
z

A
x
A
i
z
A
y
A
xkBjBiBxABx
121323
321
)(

=
y
A
x
A
x
A
z
A
z
A
y
A
BBB
k
j
i
















123123
321

=
kB
z
A
y
A
B
x
A
z
A
jB

z
A
y
A
B
y
A
x
A
iB
x
A
z
A
B
y
A
x
A
































+



































































2
23
1
31

3
23
1
12
3
31
2
12


Similarly, by interchanging the variable of A and B, we have
(A.∇)B =
( )
kBjBiB
z
A
y
A
x
A
321321
++











+


+



( )



















+


























++=∇ k
y
B
x
B

j
z
B
x
B
i
z
B
y
B
xkAjAiAxBAx
121323
321
)(

=
y
B
x
B
x
B
z
B
z
B
y
B
AAA
k

j
i















123123
321

=
kA
z
B
y
B
A
x
B
z

B
jA
z
B
y
B
A
y
B
x
B
iA
x
B
z
B
A
y
B
x
B
































+



































































2
23

1
31
3
23
1
12
3
31
2
12


Hence
(B.∇)A + Bx(∇xA)
=
k
z
A
B
z
A
B
z
A
Bj
y
A
B
y
A

B
y
A
Bi
x
A
B
x
A
B
x
A
B








+


+


+











+


+


+








+


+


2

2
1
1
3
3
3
3
1
1
2
2
3
3
2
2
1
1

(A.∇)B + Ax(∇xB)
=
k
z
B
A
z
B
A
z
B
Aj

y
B
A
y
B
A
y
B
Ai
x
B
A
x
B
A
x
B
A








+


+



+










+


+


+








+



+


2
2
1
1
3
3
3
3
1
1
2
2
3
3
2
2
1
1


7


(B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB)
=
(

)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
k
z
BA
z
BA
z
BA
j
y
BA
y
BA
y

BA
i
x
BA
x
BA
x
BA








+


+


+











+


+


+








+


+


221133331122332211

=
(
)
(

)
(
)
k
z
BABABA
j
y
BABABA
i
x
BABABA

+
+

+

+
+

+

+
+

332211332211332211

=
( )

332211
BABABAk
z
j
y
i
x
++










+


+


= RHS
LHS = RHS

∴ ∇(A.B) = (B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB)



(12) Prove ∇.(∇
φ
) = ∇
2
φ

∇.(∇
φ
) =










+


+













+


+


z
k
y
j
x
i
z
k
y
j
x
i
φφφ
.

=
φ
φφφ
2

2
2
2
2
2
2
∇=


+


+


zyx

∴ ∇.(∇
φ
) = ∇
2
φ



(13) Prove ∇x(∇
φ
) = 0
∇x(∇
φ

) =










+


+












+



+


z
k
y
j
x
ix
z
k
y
j
x
i
φφφ

=
zyx
zyx
kji













φφφ

=
(
)
(
)
(
)
kji
xyyxxzzxyzzy
φφφφφφ
−+−−−

Since
φ
has continuous second order partial derivatives, we have

φ
xy
=
φ
yx

φ
yz
=

φ
zy

φ
zx
=
φ
xz

∴ ∇x(∇
φ
) = 0


8


(14) Prove ∇.(∇xA) = 0
∇.(∇xA) =




















+




































+


+


k
y
A
x
A
j
z
A
x
A

i
z
A
y
A
z
k
y
j
x
i
121323
.

=








∂∂


∂∂

+









∂∂


∂∂










∂∂


∂∂

zy
A
zx
A

yz
A
yx
A
xz
A
xy
A
1
2
2
2
1
2
3
2
2
2
3
2

= 0
∴ ∇.(∇xA) = 0


(15) Prove ∇x(∇xA) = ∇(∇.A) - ∇
2
A
∇x(∇xA) =




















+




































+


+



k
y
A
x
A
j
z
A
x
A
i
z
A
y
A
x
z
k
y
j
x
i
121323

=
y
A
x
A
x

A
z
A
z
A
y
A
zyx
k
j
i






















123123

=
k
yz
A
y
A
x
A
xz
A
j
z
A
zy
A
xy
A
x
A
i
xz
A
z
A
y
A

yx
A








∂∂

+






∂∂

+











+
∂∂


∂∂













∂∂

+






∂∂


2
2
2
3
2
2
3
2
1
2
2
2
2
3
2
1
2
2
2
2
3
2
2
1
2
2
1
2
2

2

= LHS

∇(∇.A) - ∇
2
A
=
( )
kAjAiA
zyxz
A
y
A
x
A
z
k
y
j
x
i
321
2
2
2
2
2
2
321

++










+


+













+



+












+


+



=
k
y
A
x
A
zy
A
zx

A
j
z
A
x
A
yz
A
yx
A
i
z
A
y
A
xz
A
xy
A















∂∂

+
∂∂

+














∂∂

+
∂∂

+















∂∂

+
∂∂

2
3
2
2
3
2
2
2
1
2
2
2

2
2
2
2
3
2
1
2
2
1
2
2
1
2
3
2
2
2

= RHS

LHS = RHS
∴ ∇x(∇xA) = ∇(∇.A) - ∇
2
A


×