Tải bản đầy đủ (.pdf) (46 trang)

cơ sở lí thuyết về hiện tượng phân cực ánh sáng và ứng dụng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.61 MB, 46 trang )



CHƯƠNG 1
CƠ SỞ LÍ THUYẾT VỀ HIỆN TƯỢNG PHÂN CỰC ÁNH SÁNG
1.1. Ánh sáng tự nhiên và ánh sáng phân cực
1.1.1 Ánh sáng tự nhiên
Ta đã biết rằng nguyên tử phát ra ánh sáng dưới dạng những đoàn sóng nối tiếp
nhau. Trong mỗi đoàn sóng này vector điện trường 


luôn dao động theo một
phương xác định, vuông góc với tia sáng (H. 1-1)






Nhưng do tính chất hỗn loạn của các vận động bên trong nguyên tử, vector 



trong các đoàn sóng do một nguyên tử phát ra có thể dao động theo những phương
khác nhau xung quanh tia sáng. Mặt khác nguồn sáng mà chúng ta đang xét dù có
kích thước khá nhỏ cũng bao gồm rất nhiều nguyên tử, phương dao động của
vector 


trong các đoàn sóng do các nguyên tử phát ra cũng thay đổi một cách hỗn
loạn xung quanh tia sáng. Như vậy ánh sáng từ một nguồn phát ra (Mặt Trời, dây
tóc nung đỏ ) có vector cường độ điện trường dao động theo tất cả mọi phương


vuông góc với tia sáng. Ánh sáng có vector cường độ điện trường dao động đều
đặn theo mọi phương vuông góc với tia sáng được gọi là ánh sáng tự nhiên.
Tia sáng
Hình 1-1. Dao động của vector cường độ điện trường trong một đoàn sóng



Để biểu diễn ánh sáng tự nhiên người
ta vẽ trong mặt phẳng vuông góc với tia
sáng các vector cường độ điện trường có
trị số bằng nhau, phân bố đều đặn xung
quanh tia sáng đầu mút của chúng nằm
trên một đường tròn có tâm trên tia
sáng. (H. 1-2)

1.1.2 . Ánh sáng phân cực
Thực nghiệm chứng tỏ rằng khi cho một ánh sáng tự nhiên đi qua một môi
trường bất dẳng hướng về mặt quang học, ví dụ các tinh thể, thì trong những điều
kiện nhất định nào đó, tác dụng của môi trường lên ánh sáng tự nhiên có thể làm
cho vector cường độ điện trường chỉ còn dao động theo một phương nhất định.
Ánh sáng có vector cường độ điện trường chỉ dao động theo một phương xác
định được gọi là ánh sáng phân cực thẳng hay ánh sáng phân cực toàn phần.

Mắt người không có khả năng phân biệt giữa ánh sáng định hướng ngẫu nhiên
và ánh sáng phân cực, và ánh sáng phân cực phẳng chỉ có thể phát hiện qua cường
độ hoặc hiệu ứng màu, ví dụ như sự giảm độ chói khi mang kính râm. Ý niệm cơ
Tia sáng
Hình 1-2. Biểu diễn ánh sáng tự nhiên

Hình 1-3. Mô tả hiện tượng phân cực ánh sáng



bản của sự phân cực ánh sáng được minh họa trên hình 1-3 đối với một chùm ánh
sáng không phân cực đi tới hai bản phân cực thẳng. Vectơ điện trường vẽ trong
chùm ánh sáng tới dưới dạng sóng sin dao động theo mọi hướng (360
0
, mặc dù chỉ
có 6 sóng, cách nhau 60
0
được vẽ trong hình). Trong thực tế, vectơ điện trường của
ánh sáng tới dao động vuông góc với hướng truyền với sự phân bố đều trong mọi
mặt phẳng trước khi chạm phải bản phân cực thứ nhất.
Các bản phân cực minh họa trong (H. 1-3) thực ra là những bộ lọc gồm các
phân tử polymer chuỗi dài định theo một hướng. Chỉ có ánh sáng tới dao động
trong cùng mặt phẳng với các phân tử polymer định hướng bị hấp thụ, còn ánh
sáng dao động vuông góc với mặt phẳng polymer thì truyền qua bộ lọc phân cực
thứ nhất. Hướng phân cực của bản phân cực thứ nhất là thẳng đứng nên chùm tia
tới sẽ chỉ truyền qua được những sóng có vectơ điện trường thẳng đứng. Sóng
truyền qua bản phân cực thứ nhất sau đó bị chặn lại bởi bản phân cực thứ hai, do
bản phân cực này định hướng ngang đối với vectơ điện trường trong sóng ánh
sáng.
Mặt phẳng chứa tia sáng và phương dao động của vector 


được gọi là mặt
phẳng dao động ; còn mặt phẳng chứa tia sáng và vuông góc với mặt phẳng dao
động được gọi là mặt phẳng phân cực (H. 1-4). Hình 1-5a là sơ dồ biểu diễn ánh
sáng phân cực toàn phần.
Trong một số trường hợp người ta thấy rằng tác dụng của môi trường lên ánh
sáng tự nhiên làm cho cường độ điện trường dao động theo mọi phương vuông góc

với tia sáng nhưng có phương dao động mạnh, có phương dao động yếu. Ánh sáng
có vector cường độ điện trường dao động theo mọi phương vuông góc với tia
sáng, nhưng có phương dao động mạnh, có phương dao động yếu, được gọi là
ánh sáng phân cực một phần. Hình (1-4b) là sơ đồ biểu diễn ánh sáng phân cực
một phần.














Với định nghĩa ánh sáng phân cực toàn phần ở trên, thì mỗi đoàn sóng do nguyên
tử phát ra là một ánh sáng phân cực toàn phần. Như vậy, ánh sáng tự nhiên có thể
coi là tập hợp vô số ánh sáng phân cực toàn phần dao động đều đặn theo tất cả
mọi phương vuông góc với tia sáng. Ta có thể nói ánh sáng tự nhiên có tính
chất đối xứng xung quanh phương truyền.
1.2. Sự phân cực ánh sáng do truyền qua bản Tuamalin dày.
Định luật Maluyt
Trong những điều kiện nào đó, các
tinh thể có thể biến ánh sáng tự nhiên
thành ánh sáng phân cực. Tuamalin
(hợp chất Alumini Silicôbôrat) là một

trong những tinh thể như vậy. Tuamalin
dày khoảng 1mm trở lên chỉ cho những
ánh sáng nào có vector cường độ điện
trường nằm trong một mặt phẳng xác

Tia
sáng
Mặt phẳng phân cực
Mặt phẳng dao động
Hình 1-4. Mặt phẳng dao động
và mặt phẳng phân cực

a)
b)
Hình 1-5. Sơ đồ biểu diễn
ánh sáng phân cực toàn phần (a) ; một phần (b)

Hình 1-6. Bản tuamalin
a
)
C
B
D
A



định, đó là mặt phẳng chứa một phương đăc biệt (gọi là quang trục của tinh thể) và
tia sáng.
Còn các ánh sáng có vector 



vuông góc với mặt phẳng trên sẽ không đi qua
bản. Trong trường hợp bản Tuamalin có có quang trục song song với cạnh AB, còn
tia sáng chiếu vào vuông góc với mặt ABCD của bản, thì vì ánh sáng là sóng
ngang, nên tia sáng sau bản Tuamalin có vector 


song song với quang trục của
bản (H.1-6)
Vì tính đối xứng của ánh sáng tự nhiên xung quanh phương truyền, nên nếu ta
quay bản tuamalin xung quanh tia sáng thì ở vị trí nào của bản cũng có ánh sáng
truyền qua. Ánh sáng đó là ánh sáng phân cực toàn phần.
Lấy một bản tuamalin T
2
(bản T
2
đặt sau bản T
1
). Gọi  là góc giữa hai quang
trục (H.1-7a). Do tính chất của bản tuamalin, biên độ dao động sáng sau bản T
2
là:


cos
12
aa 
(1.1)
Cường độ sáng sau bản T

2
sẽ là :


2
1
2
21
cosIaI 
(1.2)
Trong đó I
1
= a
1
2
là cường độ sáng sau bản T
1
. Như vậy, nếu giữ cố định bản T
1

và quay bản T
2
xung quanh tia sáng thì I
2
sẽ thay đổi. Lúc hai quang trục song song
với nhau (=0) thì I
2
= I
2max
= I

1
( H.1-7b). còn lúc hai quang trục vuông góc với
nhau (=

2
) thì I
2
= I
2min
= 0 (H.1-7c) ; T
1
được gọi là kính phân cực, T
2
được gọi
là kính phân tích.







1


2

Hai quang trục 
1
và 

2
song song với nhau


T
1

T
2

b)

1


2


1


2

a)












Công thức (1.2) biểu diễn một định luật gọi là định luật Maluyt : Khi cho một
chùm tia sáng tự nhiên rọi qua hai bản tuamalin có quang trục hợp với nhau một
góc  thì cường độ sáng nhận được tỉ lệ với cos
2

Dùng một bản tuamalin ta có thể phân biệt được một chùm sáng là ánh sáng tự
nhiên hay ánh sáng phân cực. Đặt một bản tuamalin trên đường đi của tia sáng.
Nếu tia sáng là ánh sáng tự nhiên thì khi quay bản tuamalin, cường độ ánh sáng
ban đầu không thay đổi, còn nếu ta dùng tia sáng là ánh sáng phân cực thì khi quay
bản tuamalin cường độ ánh sáng sau bản sẽ thay đổi.
1.3. Phân cực do phản xạ. Định luật Brewster
Như vậy ta có thể tăng hay giảm cường độ ánh sáng khi nhìn ánh sáng Mặt Trời
từ mặt nước chẳng hạn khi quay tròn một bản phân cực (như một kính râm phân
cực) xung quanh phương quan sát. Ta có thể làm được điều đó bởi vì ánh sáng
phân cực bị phân cực toàn phần hay một phần do quá trình phản xạ từ mặt phẳng.
H. 1-8 cho thấy một tia sáng tới không phân cực đập trên một mặt thủy tinh. Các
vector cường độ điện trường của ánh sáng có thể phân tích thành những thành phần
vuông góc (vuông góc với mặt phẳng tới) và những thành phần song song (nằm
trong mặt phẳng tới). Đối với ánh sáng tự nhiên hai thành phần này có độ lớn bằng
nhau.
Hình 1-7. Sự truyền ánh sáng qua hai bản tuamalin

1



2

Hai quang trục 
1
và 
2
vuông góc với nhau


c)




Với một góc đặc biệt gọi là góc Brewster 
B
thành phần song song của tia tới
bị khúc xạ hoàn toàn. Kết quả là ánh sáng phản xạ không chứa thành phần song
song và do vậy được phân cực hoàn toàn vuông góc với mặt phẳng tới ( ở đây là
mặt phẳng của trang giấy ). Tia khúc xạ bị phân cực một phần nó bao gồm một
thành phần song song khá mạnh và một thành phần vuông góc yếu.
Đối với thủy tinh hay những vật liệu diện môi khác có một góc tới đặc biệt, gọi
là góc Brewster 
B
, mà thành phần song song không phản xạ. Điều đó chứng tỏ
rằng ánh sáng phản xạ từ thủy tinh dưới góc tới Brewster sẽ phân cực hoàn toàn
với mặt phẳng dao động thẳng góc với mặt phẳng tới ( mặt phẳng của hình vẽ ). Do
thành phần song song của tia tới dưới góc Brewster không thể phản xạ nên chúng
sẽ khúc xạ hoàn toàn. Đối với những góc tới khác, ánh sáng phản xạ bị phân cực
một phần vì rằng thay vì không có phản xạ thì nay lại có sự phản xạ một ít thành

phần song song.


Hình 1-8. Góc brewster


1.3.2. Định luật Brewster
Một tia sáng tự nhiên đến đập lên mặt phân cách giữa hai môi trường dưới
góc tới Brewster 
B
, thực nghiệm cho thấy các tia phản xạ và khúc xạ vuông góc
với nhau. Do tia phản xạ trong hình vẽ phản xạ dưới góc Brewster còn tia kia khúc
xạ dưới góc 
r
nên chúng ta có:

0
90
rB

(1.3)
Hai góc này cùng liên hệ với nhau theo phương trình

2211
sinsin

nn 
( khúc xạ ) (1.4)
Tia khúc xạ nằm trong mặt phẳng tới.
Tùy ý chọn chỉ số 1 trong phương trình (1.4) cho vật liệu chứa tia tới và tia phản

xạ, chúng ta có được các phương trình

rB
nn

sinsin
21

(1.5)
Phối hợp các phương trình trên sẽ dẫn đến

BBB
nnn

cos)90sin(sin
2
0
21




)(tan
1
2
1
n
n
B




(góc Brewster ) (1.6)
(
2
1
) là chiết suất tỉ đối của môi trường hai đối với môi trường một
Nếu các tia tới và phản xạ truyền trong không khí, chúng ta có thể lấy n
1
=1 và
thay n
2
= n, phương trình (1.6) viết lại

)(tan
1
n
B



(Định luật Brewster) (1.7)
Đó là dạng đơn giản của phương trình (1.6) và được biết như là định luật
Brewster định luật và góc 
B
mang tên ông David Brewster người đã tìm thấy bằng
thực nghiệm năm 1812.





1.4. Sự phân cực do tán xạ
Các phân tử chất khí và nước trong bầu khí quyển làm tán xạ ánh sáng từ Mặt
Trời theo mọi hướng, hiệu ứng gây ra bầu trời xanh, những đám mây trắng, hoàng
hôn đỏ rực, và hiện tượng gọi là sự phân cực khí quyển. Lượng ánh sáng tán xạ
(gọi là tán xạ Rayleigh) phụ thuộc vào kích thước của các phân tử (hydrogen,
oxygen, nước) và bước sóng ánh sáng, như đã được chứng minh bởi huân tước
Rayleigh hồi năm 1871. Những bước sóng dài, như đỏ, cam, vàng không bị tán xạ
nhiều như các bước sóng ngắn, như tím và xanh dương.

Sự phân cực khí quyển là kết quả trực tiếp của sự tán xạ Rayleigh của ánh
sáng Mặt Trời bởi các phân tử trong khí quyển. Lúc va chạm giữa photon đến từ
Mặt Trời và phân tử chất khí, điện trường từ photon giảm dao động và rồi tái bức
xạ ánh sáng phân cực từ phân tử đó (minh họa trong H. 1-9). Ánh sáng phát xạ bị
tán xạ theo hướng vuông góc với hướng truyền ánh sáng Mặt Trời, và bị phân cực
hoặc dọc, hoặc ngang, phụ thuộc vào hướng tán xạ. Đa phần ánh sáng phân cực
Hình 1-9. Sự phân cực của ánh sáng Mặt Trời tán xạ


chạm đến Trái Đất bị phân cực ngang (trên 50%), một sự thật có thể xác nhận bằng
cách quan sát bầu trời qua một bộ lọc Polaroid.
Có những báo cáo cho biết một số loài côn trùng và động vật nhất định có khả
năng phát hiện ánh sáng phân cực, gồm các loài kiến, ruồi, và một số loài cá, danh
sách các loài thật ra còn dài hơn nhiều. Ví dụ, một số loài côn trùng (chủ yếu là
ong mật) được cho là đã sử dụng ánh sáng phân cực để định vị mục tiêu của chúng.
Nhiều người cũng tin rằng có một số cá nhân nhạy cảm với ánh sáng phân cực và
có thể quan sát thấy một đường chân trời màu vàng chồng lên nền trời xanh khi
nhìn chằm chằm theo hướng vuông góc với hướng của Mặt Trời (một hiện tượng
gọi là chổi Haidinger). Các protein sắc tố vàng, gọi là macula lutea, là những tinh
thể lưỡng sắc cư trú trong hố mắt người, được biết là cho phép người ta nhìn thấy

ánh sáng phân cực.
1.4. Phân cực do môi trường lưỡng chiết
1.4.1. Hiện tượng lưỡng chiết
Năm 1670 Bactoolin lần đầu tiên
nhận thấy rằng, khi một tia sáng truyền
qua tinh thể đá băng lan (một dạng
CaCO3), nó bị tách thành hai tia. Đó là
hiện tượng lưỡng chiết. Tinh thể đá băng
lan trong tự nhiên thường có dạng hình
hộp lệch mà sáu mặt là những hình thoi

bằng nhau có các góc xác định 101
0
52’ và 78
0
08’.
Thí nghiệm cho thấy rằng hai tia sáng ra khỏi tinh thể song song với nhau và
song song với tia tới (Hình 1-11).Chúng là hai tia phân cực phẳng, phân cực trong
mặt phẳng vuông góc với nhau và có cường dộ như nhau. Một trong hai tia tuân
Hình 1-10 Tinh thể nhỏ của băng lan


theo định luật khúc xạ ánh sáng thông thường gọi là tia thường và được kí hiệu
bằng chữ o. Tia thứ hai, nói chung không tuân theo định luật khúc xạ ánh sáng gọi
là tia bất thường và được kí hiệu bằng chữ e.
Tinh thể đá băng lan có một phương duy nhất nếu chiếu ánh sáng dọc theo đó sẽ
xảy ra hiện tượng lưỡng chiết. Tinh thể như vậy được gọi là tinh thể đơn trục và
phương đặc biệt đó được gọi là trục quang học của tinh thể. Trên hình 1-11
đó là phương song song với AA
1

. Cần
chú ý rằng trục quang học chỉ là một
phương xác định, chứ không phải là một
đường thẳng cố định nào trong tinh thể
vì vậy một mẩu vỡ của tinh thể cũng có
tính chất như tinh thể nguyên vẹn.
không phải chỉ có đá băng lan mà hầu
hết các tinh thể (trừ tinh thể thuộc hệ lập
phương) đều có tính chất lưỡng chiết

Ngoài các tinh thể đơn trục còn có những tinh thể trong đó có hai phương
nếu chiếu ánh sáng dọc theo đó sẽ không xãy ra hiện tượng lưỡng chiết. Những
tinh thể như thế gọi là tinh thể lưỡng trục. Trong các tinh thể lưỡng trục cả hai tia
xuất hiện do hiện tượng lưỡng chiết đều là tia bất thường. Ở đây chúng ta không
khảo sát hiện tượng lưỡng chiết trong các tinh thể lưỡng trục. Trong tinh thể đơn
trục, mặt phẳng chứa tia tới và trục quang học của tinh thể được gọi là mặt phẳng
chính hay tiết diện chính của tinh thể. Trên hình 1-11, đó là mặt phẳng chéo
ACA
1
C
1
. Từ đây về sau ta khảo sát sự phân cực ánh sáng do lưỡng chiết, ta biểu
diễn tinh thể dá băng lan bằng mặt phẳng chính của nó.
1.4.2. Tia thường và tia bất thường .
Như đã nói ở trên cả hai tia thường và tia bất thường đều là tia phân cực
phẳng. Thật vậy, nếu đặt một máy phân tích (một gương thủy tinh chẳng hạn) hứng
Hình 1-11. Sự truyền ánh sáng qua tinh
thể băng lan



các tia đó ta có thể chứng tỏ rằng tia bất thường sẽ bị tắt khi mặt phẳng tới trên
gương trùng với mặt phẳng chính của tinh thể, khi đó cường độ sáng của tia
thường sẽ đạt giá trị cực đại. Khi quay máy phân tích một góc 90
0
thì hiện tượng sẽ
xảy ra ngược lại. Từ thí nghiệm trên ta có thể kết luận rằng vector điện trường 


0

trong tia thường vuông góc với mặt phẳng chính, còn vector điện trường 


s
trong
tia bất thường nằm trong mặt phẳng chính của tinh, nghĩa là chúng phân cực trong
hai mặt phẳng vuông góc với nhau.
Ra khỏi tinh thể hai tia này chỉ khác nhau về phương phân cực, cho nên tên
gọi “tia thường” và “tia bất thường” chỉ có ý nghĩa khi chúng ở bên trong tinh thể.
Nếu lại đặt trên đường truyền của mỗi tia thường và tia bất thường một tinh thể
lưỡng chiết nữa, thì mỗi tia lại tách thành hai tia thường và tia bất thường (H.1-12).
Như vậy hiện tượng lưỡng chiết xảy ra khi chiếu vào tinh thể ánh sáng tự nhiên
cũng như ánh sáng phân cực.


khi chiếu vào tinh thể ánh sáng tự nhiên
cũng như ánh sáng phân cực. Tuy nhiên
khi chiếu bằng ánh sáng tự nhiên thì
cường độ của tia thường và tia bất
thường bằng nhau, còn nếu ánh sáng rọi

vào là ánh sáng phân cực phẳng, nói
chung cường độ của hai tia không bằng
nhau, mà phụ thuộc vào góc

giữa mặt
phẳng tới và mặt phẳng chính của nó theo định luật Maluyt. Thật vậy, giả sử ánh
sáng phân cực phẳng tới tinh thể, có vector điện trường 


làm với mặt phẳng chính
của tinh thể một góc

. Như vậy vector điện trường 


0
của tia thường và 


e
của tia
R
1

R
2

e
e
R

o
e
o
Hình 1-12


bất thường sẽ làm với mặt phẳng dao động của tia tới những góc


0
90



(H.1-13). Gọi biên độ dao động của vector điện trường của tia tới tia thường
và tia bất thường là 


, 


0
và 


e
, ta sẽ có:


cosEE

e


,

sin
0
EE


(1.8)









Vậy tỉ số cường độ của chúng sẽ bằng:




2tan
2cos
2sin
2
020


e
e
E
E
I
I


(1.9)




Hệ thức (1.9) được thực nghiệm hoàn
toàn xác nhận. Thật vậy, đặt một màn M
vuông góc với tia thường và tia bất
thường và quan sát vệt sáng của chúng
trên màn đó (H. 1-14). Khi tia quay tinh
thể quanh phương của tia thường thì vệt
sáng 0 của tia thường không di chuyển,
còn vệt sáng e của tia bất thường quay
xung quanh 0, đồng thời tỉ số cường độ của các vệt sáng này thay đổi phù hợp với
hệ thức (1.9).
I
2

I
0


e
I
2

I
0

e
0
B
B’
O’
O
E
e

E
E
0

Hình 1-13
Hình 1-14


Thay đổi góc tới i của tia đập lên mặt ABCD, đo góc khúc xạ của tia thường (i
0
)
và của tia bất thường (i
e
) người ta nhận thấy, đối với tia thường:


constn
i
i

0
0
sin
sin
(1.10)
Trong đó n
0
là chiết suất của tinh thể đối với tia thường.
Đối với tia bất thường:

constn
i
i
e
e

sin
sin
(1.11)
Trong đó n
e
là chiết suất của tinh thể đối với tia bất thường, nó phụ thuộc vào
góc tới i. Ngoài ra, tia bất thường nói chung không nằm trong mặt phẳng tới, nó chỉ
nằm trong mặt phẳng tới khi mặt phẳng tới trùng với mặt phẳng chính.
Từ các hệ thức (1.10) và (1.11) ta suy ra vận tốc của tia thường v

0
không đổi theo
phương truyền, còn vận tốc của tia bất thường v
e
phụ thuộc vào phương truyền
trong tinh thể. Thực nghiệm chứng tỏ rằng, vận tốc của tia bất thường theo phương
song song với quang trục là cực tiểu, theo phương đó
0
vv
e

, còn theo phương
vuông góc với quang trục, v
e
có giá trị cực đại. Như vậy:

0
vv
e

(1.12)
Vì chiết suất tỉ lệ nghịch với vận tốc, do đó:

0
nn
e

(1.13)
Thực nghiệm đo được, đối với băng lan, n0 = 1,66 còn ne có giá trị trong khoảng
từ 1,48 đến 1,66

Những tinh thể mà trong đó n
e
< n
0
được gọi là tinh thể âm, ví dụ như băng lan ;
còn những tinh thể mà n
e
> n
0
(ví dụ như thạch anh) được gọi là tinh thể dương.
Trên đây ta đã xét tinh thể băng lan, đó là một tinh thể đơn trục. Trong tự nhiên
còn có những tinh thể lưỡng trục, đó là những tinh thể có hai quang trục theo hai
hướng khác nhau, ví dụ: mica, gipxơ Một tia sáng truyền qua tinh thể lưỡng trục
cũng bị tách thành hai: hai tia đó đều là ánh sáng phân cực toàn phần, có vector


cường độ điện trường
E

nằm trong mặt phẳng vuông góc với nhau. Khác với trong
tinh thể đơn trục, hai tia bị tách ra trong tinh thể lưỡng trục đều là tia bất thường,
nghĩa là vận tốc truyền của chúng phụ thuộc vào phương truyền trong tinh thể.
1.4.3. Mặt sóng trong môi trường tinh thể đơn trục
Để nghiên cứu sự truyền ánh sáng của tia thường và tia bất thường trong tinh
thể (ta chỉ xét trường hợp tinh thể đơn trục), ta xét mặt sóng của sóng ánh sáng
trong các tinh thể đó. Vì vận tốc của tia thường kông phụ thuộc phương truyền
trong tinh thể, do đó mặt sóng thứ cấp đối với ánh sáng thường từ một điểm nào đó
trong tinh thể phát ra là một mặt cầu (dù tinh thể là dương hay âm). Với ánh sáng
bất thường, vận tốc phụ thuộc vào phương truyền, do đó mặt sóng thứ cấp không
phải là mặt cầu. Thực nghiệm và lí thuyết chứng tỏ rằng mặt sóng đối với ánh sáng

bất thường là một mặt elipxôit tròn xoay có trục song song với quang trục của tinh
thể.




H.1-15. Hình dạng các mặt sóng thứ cấp của các tia thường và các tia bất thường từ
một điểm trong tinh thể phát ra trong trường hợp:
a) Tinh thể dương. b) Tinh thể âm


Hình 1-15 biểu diễn các mặt sóng thứ cấp của ánh sáng thường và ánh sáng bất
thường xuất phát từ cùng một điểm trong tinh thể. Các tiếp điểm của hai mặt sóng
đó nằm trên quang trục của tinh thể.
Muốn xác định tia thường và tia bất thường trong tinh thể đơn trục, ta phải áp
dụng nguyên lí Huyghen để vẽ các mặt sóng thực của ánh sáng thường và ánh sáng
bất thường ở cùng một thời điểm nào đó. Nối điểm nguồn thứ cấp với tiếp điểm
giữa mặt sóng thứ cấp và mặt sóng thực ứng với tia o, ta sẽ được phương truyền
của tia thường. Tương tự như vậy, nếu ta nối cùng điểm nguồn thứ cấp ấy với tiếp
điểm giữa mặt sóng thứ cấp và mặt sóng thực ứng với tia e, ta sẽ được phương
truyền của tia bất thường.
Sau đây ta sẽ xác định tia thường và tia bất thường trong một số trường hợp
khi ánh sáng truyền trong tinh thể băng lan. Đẻ đơn giản ta lấy chùm ánh sáng tới
là chùm đơn sắc, song song, rọi vuông góc với mặt tinh thể.
Trường hợp 1: Quang trục nghiêng một góc nào đó so với mặt tinh thể.
Vì chùm ánh sáng được rọi vuông góc vào mặt tinh thể nên mặt tinh thể AB
trùng với một mặt sóng của chùm ấy. Do đó theo nguyên lí Huyghen các điểm trên
mặt tinh thể được ánh sáng rọi tới có thể coi là những nguồn thứ cấp phát ánh sáng
đi vào tinh thể bắt đầu từ cùng một lúc (H.1-16). Xung quanh các điểm A và B ta
thiết lập các mặt sóng thứ cấp mặt cầu và mặt elipxôit tròn xoay, hai mặt sóng này

tiếp xúc với nhau theo phương của quang trục. Các mặt sóng thứ cấp khác có thể
thiết lập xung quanh các điểm nằm giữa A và B.
Theo nguyên lí Huyghen, bao hình của các mặt sóng thứ cấp (mặt phẳng CD
và EF) cho ta mặt sóng của ánh sáng thường và ánh sáng bất thường. Nối A với C
và A với E ta sẽ được phương truyền của tia thường và tia bất thường trong tinh
thể. Rõ ràng khi vào tinh thể tia sáng bị tách thành hai. Từ hình vẽ ta thấy tia bất
thường không vuông góc với mặt sóng của nó.





Trường hợp 2: chùm ánh sáng và quang trục đều vuông góc với mặt AB của tinh
thể (H.1-17). Vì theo phương quang trục vận tốc của tia thường và tia bất thường
trùng nhau; do đó mặt sóng của ánh sáng thường và bất thường trùng nhau. Kết
quả khi vào tinh thể tia sáng không bị tách thành hai.
Trường hợp 3: Chùm sáng vuông góc với mặt tinh thể, còn quang trục song song
với mặt đó (H.1-18a và H.1-18b). Trên hình 1-18a quang trục nằm trong mặt phẳng
hình vẽ, còn trên hình 1-18b quang trục vuông góc với mặt phẳng hình vẽ. Hình vẽ
cho ta thấy trong trường hợp này tia thường và tia bất thường truyền theo một
hướng nhưng với vận tốc khác nhau.

H.1-16. Xác định tia thường và tia bất thường khi quang trục nghiêng
một góc nào đó so với mặt tinh thể



















Hình 1-17. Xác định tia thường và tia bất thường trong trường hợp chùm sáng
và quang trục vuông góc với mặt tinh thể
Hình 1-18. Xác định tia thường và tia bất thường trong trường hợp chùm
sáng vuông góc với mặt tinh thể, còn quang trục song song với mặt đó


1.5. Các dụng cụ phân cực ánh sáng đặc biệt
1.5.1. Nhận xét chung
Trước đây chúng ta khảo sát một số phương pháp biến ánh sáng tự nhiên
thành ánh sáng phân cực phẳng. Chẳng hạn khi cho ánh sáng tự nhiên phản xạ từ
mặt phân cách giữa hai chất điện môi thỏa mãn điều kiện Brewster (H. 1-8), thì ánh
sáng phản xạ là ánh sáng phân cực phẳng. Nếu ta dặt liên tiếp nhiều bản điện môi
thì chùm tia khúc xạ cũng trở thành chùm tia phân cực phẳng. Tuy nhiên ánh sáng
phân cực thu được ở đây sẽ rất yếu vì chỉ có một phần nhỏ ánh sáng được phản xạ
(đối với ánh sáng phản xạ) hay vì sự phản xạ nhiều lần ở các mặt bản đặt nối tiếp
nhau (đối với ánh sáng truyền qua) làm mất mát ánh sáng. Vì vậy phương pháp này
không tiện sử dụng trong thực tế. Ta còn biết tia thường và tia bất thường thu được
do hiện tượng lưỡng chiết là tia phân cực phẳng. Tuy nhiên vì các tinh thể lưỡng

chiết thường có kích thước bé, cho nên ngay cả tinh thể đá băng lan là tinh thể có
hiện tượng lưỡng chiết mạnh nhất cũng không cho tia thường và tia bất thường
tách xa nhau.
Vì vậy để biến ánh sáng tự nhiên thành ánh sáng phân cực phẳng, người ta
thường dùng những lăng kính phân cực dựa vào tính chất lưỡng chiết của tinh thể
và các bản phân cực dựa vào tính lưỡng sắc, tức là tinh thể hấp thụ tia thường và
bất thường không giống nhau.
Lăng kính phân cực thường là một tổ hợp lăng kính bằng tinh thể. Lăng kính
phân cực được chia ra làm hai loại:
a) Lăng kính chỉ cho một tia phân cực phẳng.
b) Lăng kính cho hai tia phân cực phẳng phân cực trong hai mặt phẳng vuông
góc với nhau. Lăng kính phân cực và các bản phân cực ánh sáng là những
dụng cụ phân cực ( máy phân cực). Dưới đây ta sẽ khảo sát vài dạng dụng cụ
phân cực khác nhau thuộc các loại nói trên.



1.5.2. Lăng kính Nicol.









Năm 1828 nhà vật lí William Nicol là người đầu tiên đã chế tạo một dụng cụ
phân cực ánh sáng bằng cách chẻ và hàn hai tinh thể spar Iceland với nhau bằng
nhựa Canada. Lăng kính Nicol lần đầu tiên được sử dụng để đo góc phân cực của

hỗn hợp lưỡng chiết, mang đến những phát triển mới trong việc tìm hiểu sự tương
tác giữa ánh sáng phân cực và các chất kết tinh. Lăng kính Nicol còn được gọi tắt
là Nicol. Nó là dụng cụ phân cực phổ biến nhất thường được dùng hơn cả và chỉ
cho một tia phân cực phẳng.
Một tia sáng tự nhiên rọi tới Nicôn bị tách thành hai, tia thường và tia bất
thường. Vì n
0
> n
e
, do đó tia thường bị khúc xạ nhiều hơn tia bất thường. Đến lớp
nhựa canada, tia thường bị phản xạ toàn phần (vì n
0
> n
nh
và i
1
> i
1max
) và đập lên
mặt dưới của nicôn. Trên mặt đó người ta đã bôi đen, kết quả tia thường bị hấp thụ.
Với tia bất thường vì: n
e
< n
nh
, nên nó qua lớp nhựa, truyền trong băng lan rồi ló ra
ngoài theo phương song song với tia tới. Biết rằng tia bất thường có vector cường
độ điện trường dao động trong mặt phẳng chính ứng với tia đó, nên ta có thể kết
luận: khi rọi một chùm ánh sáng tự nhiên qua nicôn, thì sau nicol ta được một
chùm ánh sáng phân cực toàn phần có vector cường độ điện trường dao động
Hình 1-19. Lăng kính phân cực nicol



trong mặt phẳng chính của tia bất thường

Nếu rọi đến nicol một tia sáng phân cực toàn phần có vector cường độ điện
trường dao động theo mọi phương nào thì nicol cũng tách tia đó thành hai tia và
cuối cùng cũng chỉ có tia bất thường truyền qua bản. Đặc biệt nếu ánh sáng phân
cực rọi tới có vector cường độ điện trường dao động trong mặt phẳng chính ứng
với tia bất thường thì ánh sáng đó truyền được hoàn toàn qua nicol; nếu còn ánh
sáng phân cực toàn phần có vector cường độ điện trường dao động vuông góc với
mặt phẳng chính của tia bất thường thì ánh sáng đó sẽ bị niol ngăn lại hoàn toàn.
Nếu rọi một chùm ánh sáng tự nhiên đén nicol N
1
, sau N
1
ta lại dặt một nicol N
2
thì
nói chung cường độ ánh sáng sau nicol thứ hai khác cường độ ánh sáng sau nicol
thứ nhất. Nếu N
1
và N
2
có hai mặt phẳng chính (ứng với tia bất thường) hợp với
nhau một góc , thì cường độ sáng sau bản N
2
sẽ là:


2

12
cosII 
(1.14)
Trong đó I
1
là cường độ sáng sau N
1
; N
1
được gọi là nicol phân cực, N2 được gọi
là nicol phân tích.
Đặc biệt nếu hai mặt phẳng chính (ứng với tia bất thường) của hai nicôn song song
với nhau thì cường độ sáng sau N
2
, bằng cường độ sáng sau N
1
. Lúc đó hai nicol
được gọi là hai nicol song song với nhau (H 1-21a).
Hình 1-20. Cấu tạo của lăng kính nicol


Còn nếu N
1
và N
2
có hai mặt phẳng chính (ứng với tia bất thường) vuông góc với
nhau thì sau nicol thứ hai sẽ tối. Trường hợp này hai nicol được gọi là đặt chéo
nhau (h. 1-21b)












1.5.3. Lăng kính lưỡng chiết cho hai chùm tia.
a) Lăng kính lưỡng chiết gồm lăng kính thủy tinh và lăng kính đá băng lan
(H.1-22): trục quang học vuông góc với mặt phẳng hình vẽ, n
0
= 1,66 , n
e
= 1,486
và n
tt
= 1,49, tia thường 0 bị khúc xạ hai lần tại
mặt giới hạn của đá băng lần và ra ngoài vì
chiết suất n
0
của đá băng lan khác với chiết
suất n
tt
của thủy tinh. Trong lúc đó tia bất
thương e hầu như không bị lệch phương so với
tia tới bởi vì chiết suất n
tt
của thủy tinh được

chọn gần bằng e. Ra khỏi lăng kính ta được
hai chùm tia phân cực phẳng tách xa nhau

b) Lăng kính lưỡng chiết gồm hai mẫu đá băng lan có phương trục của quang học
khác nhau (H.1-23)
N
1

N
2

a)
N
1

b)
N
2

Sáng
Tối
Hình 1-21. Tác dụng của hai nicôn
a) song song ; b) bắt chéo
Hình 1-22




Do phương trục của quang học ở hai mẫu đá băng lan khác nhau làm cho hai chùm
tia phân cực phẳng ra khỏi lăng kính được tách xa nhau hơn.

Đối với các lăng kính nói trên khẩu độ cho phép của chùm tia tới rất bé.
1.5.4. Các bản phân cực dùng tính lưỡng sắc.
Mọi tinh thể lưỡng chiết đều hấp thụ ánh sáng ở mức độ này hay mức độ khác.
Hệ số hấp thụ phụ thuộc vào sự định hướng của vector điện trường E của sóng ánh
sáng truyền qua tinh thể. Nói cách khác trong tinh thểtia thường và tia bất thường
bị hấp thụ khác nhau. Hiện tượng đó được gọi là tính lưỡng sắc của tinh thể. Sau
đây chúng ta giới thiệu vài bản phân cực dựa vào tính lưỡng sắc thường được sử
dụng.
a) Bản tuamalin
Tuamalin là tinh thể lưỡng chiết có tính lưỡng sắc rất mạnh đối với các tia
thấy được; cụ thể là tia thường bị hấp thụ mạnh hơn tia bất thường rất nhiều. Vì
vậy hai tia ra khỏi tinh bản tuamalin có cường độ rất khác nhau và ánh sáng ra khỏi
bản là ánh sáng phân cực một phần. Nhưng nếu với bản tuamalin dày chừng 1mm,
thì thực tế tia thường bị hấp thụ hoàn toàn và ánh sáng ra khỏi bản là ánh sáng
phân cực phẳng.
Hình 1-23


Hệ số hấp thụ của tuamalin đối với tia bất thường phụ thuộc vào tần số ánh
sáng. Vì vậy khi rọi bản tuamalin bằng ánh sáng trắng, thì ánh sáng truyền qua có
màu lục – vàng. Đây là nhược điểm lớn nhất của bản tuammalin khi dùng nó làm
máy phân cực, nhưng mặt khác khẩu đọ cho phép của chùm tia tới lại rất lớn, điều
này cũng quan trọng.
b) Bản pôlarôit.
Tính lưỡng sắc còn biểu hiện mạnh hơn ở các tinh thể hêrapatit (iôđôsunfat
kynin). Với độ dày chừng 0,1mm chúng hấp thụ hoàn toàn tia thường. Kích thước
của tinh thể hêrapatit rất bé. Vì vậy muốn có máy phân cực với điện tích lớn người
ta dùng bản xenlulôit trên đó có phủ một lớp những tinh thể hêrapatit định hướng
giống nhau. Bản như thế được gọi là bản pôlarôit. Ngày nay ngoài tinh thể
hêrapatit, người ta còn dùng hợp chất khác đẻ làm pôlarôit.

Các bản lưỡng sắc thường kém trong suốt hơn so với lăng kính bằng đá băng
lan, hơn nữa lại có tính hấp thụ lọc lựa, nghĩa là hệ số hấp thụ phụ thuộc vào tần
số, làm cho ánh sáng tím và ánh sáng đỏ ra khỏi bản chỉ là phân cực một phần.
Mặc dù có những nhược điểm nói trên, nhưng trong thực tế bản pôlarôit vẫn được
sử dụng rộng rãi, vì nó là loại máy phân cực rẻ tiền, có khẩu đọ lớn (gần 180
0
) và
có diện tích lớn (vài dm
2
).
1.6. Ánh sáng phân cực elip và ánh sáng phân cực tròn.
1.6.1. Cách tạo ra ánh sáng phân cực elip và phân cực tròn.
Ở trên ta đã nghiên cứu ánh sáng phân cực thẳng, đó là ánh sáng có vector
cường độ điện trường
E

dao động theo một phương xác định. Nói cách khác, ánh
sáng phân cực thẳng là ánh sáng mà vector cường độ điện trường dao động trên
một đường thẳng. Ngoài ra trường hợp mút của vector cường độ điện trường của
ánh sáng lại chuyển động trên một đường elip hay đường tròn. Ánh sáng trong đó
mút của vector cường độ điện trường chuyển động trên một elip (hay đường tròn)
được gọi là ánh sáng phân cực elip (hay phân cực tròn).




Ta xét cách tạo ra ánh sáng phân cực elip hay phân cực tròn. Một bản tinh thể T
có bề dày d và có quang trục như hình 1-25. Rọi vuông góc với mặt trước của bản
một tia sáng phân cực toàn phần có vector cường độ điện trường
E


hợp với quang
trục một góc A. Khi vào bản, tia sáng tách thành hai: tia thường và tia bất thường.
Tia bất thường có vector cường độ điện trường
e
E

song song với quang trục, còn tia
thường có vector cường độ điện trường
0
E

vuông góc với quang trục và nằm trong
mặt phẳng vuông góc với tia sáng.

Hình 1-24. Sóng ánh sáng phân cực elip và phân cực tròn
Hình 1-25. Cách tạo ra ánh sáng phân cực elip

×