Tải bản đầy đủ (.pdf) (62 trang)

Bộ đề ôn thi tốt nghiệp THPT 2011 ( 60 Đề ) potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (738.87 KB, 62 trang )

Traàn Só Tuøng www.MATHVN.com
www.MATHVN.com 1
B  ÔN THI TT NGHIP THPT 2011 (60 )

by Trn S Tùng

www.MATHVN.com -  s 1

I. PHN CHUNG CHO TT C THÍ SINH (7,0 đim)
Câu 1 (3,0 đim) Cho hàm s xy x
3 2
3 1
= - + -
có đ th (C)
1) Kho sát s bin thiên và v đ th (C).
2) Dùng đ th (C) , xác đnh k đ phng trình sau có đúng 3 nghim phân bit:
xx k
3 2
3 0
- + =
.
Câu 2 (3,0 đim)
1) Gii phng trình
x
x
x
x
cos
3
lo g 2 lo g co s 1
lo g 1


3
3 2
p
p
- +
-
=

2) Tính tích phân I =
x
x x e dx
1
0
( )
+
ò

3) Tìm giá tr ln nht và giá tr nh nht ca hàm s y x x x
3 2
2 3 12 2
= + - +
trên
[ 1;2]
-

Câu 3 (1,0 đim) Cho hình lng tr tam giác đu ABC.A’B’C’ có tt cà các cnh đu bng a.
Tính th tích ca hình lng tr và din tích ca mt cu ngoi tip hình lng tr theo a.
II . PHN RIÊNG (3,0 đim)
A. Theo chng trình chun:
Câu 4a (2,0 đim ): Trong không gian vi h ta đ Oxyz , cho hai đng thng


{
d x t y z t
1
( ) : 2 2 ; 3;
= - = =

x y z
d
2
2 1
( ) :
1 1 2
- -
= =
-

1) Chng minh rng hai đng thng
d d
1 2
( ),( )
vuông góc nhau nhng không ct nhau .
2) Vit phng trình đng vuông góc chung ca
d d
1 2
( ),( )
.
Câu 5a (1,0 đim): Tìm môđun ca s phc
z i i
3

1 4 (1 )
= + + -
.
B. Theo chng trình nâng cao:
Câu 4b (2,0 đim): Trong không gian vi h ta đ Oxyz, cho mt phng (
a
) và hai đng
thng (d
1
), (d
2
) có phng trình:

x y z
( ) :2 2 3 0
a
- + - =
,
x y z
d
1
4 1
( ) :
2 2 1
- -
= =
-
,
x y z
d

2
3 5 7
( ) :
2 3 2
+ + -
= =
-
.
1) Chng t đng thng
d
1
( )
song song mt phng
( )
a

d
2
( )
ct mt phng
( )
a
.
2) Tính khong cách gia hai đng thng
d
1
( )

d
2

( )
.
3) Vit phng trình đng thng (D) song song vi mt phng
( )
a
, ct đng thng

d
1
( )

d
2
( )
ln lt ti M và N sao cho MN = 3 .
Câu 5b ( 1,0 đim): Tìm nghim ca phng trình
z z
2
=
, trong đó
z
là s phc liên hp
ca s phc z .
––––––––––––––––––––––
áp s:
Câu 1: 2)
k
0 4
< <


Câu 2: 1)
1
4
2
x x;
= =
2) I
4
3
=
3) Miny y , Maxy y
[ 1;2] [ 1;2]
(1) 5 ( 1) 15
- -
= = - = - =

Câu 3: 1)
lt
a
V
3
3
4
= 2)
mc
a
S
2
7
3

p
=
www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 2
Cõu 4a: 2)
x y z
2 3
1 5 2
- -
= =
Cõu 5a: z
5
=
Cõu 4b: 2)
d
3
=
3)
x y z
1 1 3
( ):
1 2 2
D
- - -
= =
- -
Cõu 5b:
1 3 1 3
(0;0),(1;0), ; , ;
2 2 2 2

ổ ử ổ ử
- - -
ỗ ữ ỗ ữ
ố ứ ố ứ


www.MATHVN.com - s 2

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 ( 3 im ) Cho hm s y = x
3
3x
2
+ 2 , cú th l ( C )
1) Kho sỏt s bin thiờn v v th ca hm s.
2) Vit phng trỡnh tip tuyn ca ( C ) ti im cú honh bng 3.
Cõu 2 ( 3 im )
1) Gii phng trỡnh sau :
x x 2
3 3
log (3 1)log (3 9) 6
+
+ + =

2) Tớnh tớch phõn I =
x
x
e
dx
e

ln2
2
0
( 1)+
ũ

3) Tỡm giỏ tr ln nht v bộ nht ca hm s
4 2
36 2
f x x x( )
= - +
trờn on
1;4
ộ ự
-
ở ỷ
.
Cõu 3 (1 im) Cho khi chúp u S.ABCD cú AB = a, gúc gia cnh bờn v mt ỏy bng
0
60
. Tớnh th tớch ca khi chúp S.ABCD theo a.
II. PHN RIấNG (3 im)
A. Theo chng trỡnh chun
Cõu 4a (2 im ) Trong khụng gian vi h to Oxyz, cho mt phng (P) cú phng trỡnh:
2 6 0
x y z
+ - - =
.
1) Tỡm hỡnh chiu vuụng gúc ca im A(1; 1; 1) lờn mt phng (P).
2) Tớnh khong cỏch t gc to n mt phng (P).

Cõu 5a ( 1 im ) Tớnh mụun ca s phc
2
2 3 3
z i i
( )
= - + .
B. Theo chng trỡnh nõng cao
Cõu 4b ( 2 im ) Trong khụng gian vi h ta Oxyz, cho ng thng (d) cú phng trỡnh
x t
y t
z t
1 2
2
3

= - +
ù
= +

ù
= -

v mt phng (P) cú phng trỡnh
2 3 0
x y z

+ + =
.
1) Tỡm ta giao im A ca ng thng (d) v mt phng (P).
2) Vit phng trỡnh mt cu cú tõm thuc (d), bỏn kớnh bng

6
v tip xỳc vi (P).
Bi 5b: (1 im) Vit dng lng giỏc ca s phc
1 3
z i
= - .

ỏp s:
Cõu 1: 2)
9 25
y x
= -

Cõu 2: 1) x
1 7
3
log (3 1)
- +
= -
2) I
1
6
=
3) f x
1;4
max ( ) 2
ộ ự
-
ở ỷ
=

; f x
1;4
min ( ) 318
ộ ự
-
ở ỷ
= -
Cõu 3:
a
V
3
6
6
=
Cõu 4a: 1)
7 5 1
3 3 3
; ;
ổ ử
ỗ ữ
ố ứ
2) d
6
=
Cõu 5a: z
117
=
Cõu 4b: 1) A(1; 3; 2)
2)
2 2 2

13 9 4 6
x y +(z =
( ) ( ) )+ + ;
2 2 2
11 3 8 6
x y z( ) ( ) ( )
+ + + + - =

Trần Só Tùng www.MATHVN.com
www.MATHVN.com 3
Câu 5b:
i i
1 3 2 cos sin
3 3
p p
ỉ ư
ỉ ư ỉ ư
- = - + -
ç ç ÷ ç ÷ ÷
è ø è ø
è ø





www.MATHVN.com -  s 3

I. PHN CHUNG CHO TT C THÍ SINH (7 đim)
Câu 1 (3.0 đim) Cho hàm s xy x

3 2
3 1
= - + -
có đ th (C).
1) Kho sát s bin thiên và v đ th (C).
2) Vit phng trình tip tuyn vi đ th (C) ti đim
0
x , bit y x
0
''( ) 0
=
.
Câu 2 (3.0 đim)
1) Gii phng trình
x
x
3 4
2 2
3 9
-
-
= .
2) Cho hàm s y
x
2
1
sin
= . Tìm ngun hàm F(x ) ca hàm s, bit rng đ th ca hàm
s F(x) đi qua đim
0

6
M
;
p
ỉ ư
ç ÷
è ø
.
3) Tìm giá tr nh nht ca hàm s
y x
x
1
2
= + +
vi x > 0 .
Câu 3 (1.0 đim) Cho hình chóp tam giác đều có cạnh đáy bằng
6
và đường cao h = 1.
Hãy tính din tích ca mt cu ngoi tip hình chóp.
II. PHN RIÊNG (3.0 đim )
A. Theo chng trình chun:
Câu 4a. (2.0 đim) Trong khơng gian vi h ta đ Oxyz, cho đng thng (d):
x y z
2 3
1 2 2
+ +
= =
-
và mt phng (P):
x y z

2 5 0
+ - - =

1) Chng minh rng (d) ct (P) ti A. Tìm ta đ đim A .
2) Vit phng trình đng thng (
D
) đi qua A, nm trong (P) và vng góc vi (d).
Câu 5a. (1.0 đim) Tính din tích hình phng gii hn bi các đng:
y x x x e
e
1
ln , ,
= = =

trc hồnh .
B. Theo chng trình nâng cao:
Câu 4b (2.0 đim) Trong khơng gian vi h ta đ Oxyz , cho đng thng (d ):
x t
y t
z t
2 4
3 2
3
ì
= +
ï
= +
í
ï
= - +



và mt phng (P):
x y z
2 5 0
- + + + =

1) Chng minh rng (d) nm trên mt phng (P) .
2) Vit phng trình đng thng (
D
) nm trong (P), song song vi (d) và cách (d) mt
khong là
14
.
Câu 5b. (1.0 đim) Tìm cn bc hai ca s phc
z i
4
= -
.
–––––––––––––––––––––––
áp s:
Câu 1: 2) 23
-
=
xy
Câu 2: 1) x
8
7
=
2)

F x x
( ) 3 cot
= - 3) Miny y
(0; )
(1) 4

= =

Câu 3: S R
2
4 9
p p
= =
www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 4
Cõu 4a: 1) A(5; 6;
-
9) 2)
x
y t t
z t
5
: 6 ( )
9
D

= -
ù
= + ẻ


ù
= - +

Ă
Cõu 5a: S
e
1
2 1
ổ ử
= -
ỗ ữ
ố ứ

Cõu 4b: 2)
x y z
3 1
4 2 1
- +
= = Cõu 5b:
z i z i
1 2
2 2 , 2 2
= - = - +

www.MATHVN.com - s 4

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3 ): Cho hm s y = x
3
+ 3mx + 2 cú th (Cm).

1) Kho sỏt v th (C) ca hm s khi m = 1.
2)Tớnh din tớch hỡnh phng gii hn bi (C) vi trc honh v cỏc ng thng
x = 1, x = 1.
3) Xỏc nh m th (Cm) cú cc tr.
Cõu 2 (3):
1) Gii bt phng trỡnh: log
2
(x + 3) > log
4
( x + 3)
2) Tớnh tớch phõn I =
x
dx
x x
1
2
1
2 1
1
-
+
+ +
ũ

3) Tỡm giỏ tr ln nht v nh nht ca hm s:
2
2 3
y x x
sin sin
= + +

.
Cõu 3 (1): Cho khi chúp tam giỏc u S.ABC cnh ỏy AB = a, gúc gia cnh bờn v mt
ỏy l
o
60
. Tớnh th tớch khi chúp theo a.
II. PHN RIấNG (3) :
A. Theo chng trỡnh chun:
Cõu 4a (2): Trong khụng gian vi h ta Oxyz cho 3 im A(2,0,0); B(0,1,0); C(0,0,3).
1) Vit phng trỡnh mt phng (ABC).
2) Vit phng trỡnh mt cu cú tõm l gc ta , tip xỳc vi mt phng (ABC).
Cõu 5a (1): Gii phng trỡnh trờn tp s phc:
2
1 0
x x
+ + =
.
B. Theo chng trỡnh nõng cao:
Cõu 4b (2) : Trong khụng gian vi h ta Oxyz, cho 4 im A(1, 0, 0); B(0, 1, 0); C(0,
0, 1); D(2, 1, 2).
1) Chng minh ABCD l mt t din. Tớnh th tớch ca nú.
2) Tớnh di ng cao h t A ca khi chúp ABCD.
Cõu 5b (1): Vit dng lng giỏc s phc
z i
1 3
= + .

ỏp s:
Cõu 1: 2) S = 4 3) m < 0
Cõu 2: 1)

x
2
> -
2) I
2( 3 1)
= -
3)
y
min 2
=
;
y
max 6
=

Cõu 3:
a
V
3
3
12
=
Cõu 4a: 1)
x y z
3 6 2 6 0
+ + - =
2) x y z
2 2 2
36
49

+ + =
Cõu 5a:
i
x
1 3
2
- -
=
;
i
x
1 3
2
- +
=

Cõu 4b: 1) V
1
3
=
2) h
2
3
=
Cõu 5b: z i2 cos sin
6 6
p p
ổ ử
= +
ỗ ữ

ố ứ


Tran Sú Tuứng www.MATHVN.com
www.MATHVN.com 5






www.MATHVN.com - s 5

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3,0 im) Cho hm s x xy
3 2
3 4
+ -
= cú th (C).
1) Kho sỏt s bin thiờn v v th (C).
2) Cho h ng thng
m
d y mx m
( ) : 2 16
= - +
vi m l tham s . Chng minh rng
m
d
( )


luụn ct th (C) ti mt im c nh I.
Cõu 2 (3,0 im)
1) Gii bt phng trỡnh
x
x
x
1
1
1
( 2 1) ( 2 1)
-
-
+
+ -
2) Cho f x dx
1
0
( ) 2
=
ũ
vi f l hm s l. Hóy tớnh tớch phõn : I =
f x dx
0
1
( )
-
ũ
.
3) Tỡm giỏ tr ln nht v giỏ tr nh nht (nu cú) ca hm s
x

x
y
2
4 1
2
+
= .
Cõu 3 (1,0 im) Cho hỡnh lng tr ABC.ABC cú ỏy ABC l tam giỏc u cnh bng a.
Hỡnh chiu vuụng gúc ca A xung mt phng (ABC) l trung im ca AB. Mt bờn
(AACC) to vi ỏy mt gúc bng
45
o
. Tớnh th tớch ca khi lng tr ny .
II . PHN RIấNG ( 3 im )
A. Theo chng trỡnh chun :
Cõu 4a (2,0 im): Trong khụng gian vi h ta Oxyz . Vit phng trỡnh mt phng (P)
qua O, vuụng gúc vi mt phng (Q) :
x y z
0
+ + =
v cỏch im M(1;2;
1
-
) mt khong
bng
2
.
Cõu 5a (1,0 im): Cho s phc
i
z

i
1
1
-
=
+
. Tớnh giỏ tr ca z
2010
.
B. Theo chng trỡnh nõng cao :
Cõu 4b (2,0 im): Trong khụng gian vi h ta Oxyz , cho ng thng (d ) :
x t
y t
z
1 2
2
1

= +
ù
=

ù
= -


v mt phng (P) :
x y z
2 2 1 0
+ - - =

.
1) Vit phng trỡnh mt cu cú tõm nm trờn (d), bỏn kớnh bng 3 v tip xỳc vi (P).
2) Vit phng trỡnh ng thng (
D
) qua M(0;1;0), nm trong (P) v vuụng gúc vi
ng thng (d).
Cõu 5b (1,0 im): Trờn tp s phc, tỡm B phng trỡnh bc hai
z Bz i
2
0
+ + =
cú tng
bỡnh phng hai nghim bng
i
4
-
.

ỏp s:
Cõu 1: 2) I(2; 16)
Cõu 2: 1)
x
x
2 1
1

- Ê < -




2) I = 2
3)
y y ; y y
4
4
1 1 1
min max 2
2 2
2
ổ ử ổ ử
= - = = =
ỗ ữ ỗ ữ
ố ứ ố ứ
Ă Ă

www.MATHVN.com Traàn Só Tuøng
www.MATHVN.com 6
Câu 3:
a
V
3
3
16
= Câu 4a:
P x z
( ) : 0
- =
hoc
P x y z
( ) :5 8 3 0

- + =
Câu 5a: z
2010
1
= -

Câu 4b: 1) S x y z
2 2 2
1
( ):( 3) ( 2) ( 1) 9
- + - + + =
; S x y z
2 2 2
2
( ) :( 3) ( 4) ( 1) 9
+ + + + + =

2)
x y z
1
( ):
2 2 1
D
-
= =
-

Câu 5b:
B i
1

= -
,
B = i
1
- +

www.MATHVN.com -  s 6

I. PHN CHUNG CHO TT C THÍ SINH (7 đim)
Câu 1: (3 đim)
1) Kho sát s bin thiên và v đ th (C) ca hàm s
3 2
3 5
y x + x

= - .
2) Tìm m đ phng trình:
3 2
3 0
x x m
– –
+ =
có ít nht hai nghim.
Câu 2: ( 3 đim)
1) Gii phng trình:
x x
1
3
log 3
=


2) Tính tích phân:
I x dx
2
2
0
4= -
ò

3) Tìm GTLN, GTNN ca hàm s
x
y
x
2 3
3 2
+
=
-
trên đon [2; 3].
Câu 3: ( 1 đim) Mt khi tr có bán kính r và chiu cao
h r
3
= . Tính din tích xung quanh
và th tích ca khi tr.
II. PHN RIÊNG ( 3 đim)
A. Theo chng trình chun
Câu 4a ( 2 đim) Trong không gian Oxyz, cho ba đim A(–1; 1; 2), B(0; 1; 1), C(1; 0; 4).
1) Chng minh tam giác ABC vuông. Vit phng trình tham s ca cnh BC.
2) Vit phng trình mt cu đi qua 4 đim A, B, C và O.
Câu 5a (1 đim) Tìm s phc z tha mãn:


z i z
z i z
2
1
ì
- =
í
- = -
î

B. Theo chng trình nâng cao
Câu 4b: ( 2 đim) Trong không gian cho ba đim A(–1; 3; 2), B(4; 0; –3) và C(5; –1;4).
1) Tìm ta đ hình chiu H ca A trên đng thng BC.
2) Vit phng trình mt cu có tâm A và tip xúc vi BC.
Câu 5b: ( 1 đim) Gii phng trình sau trên tp hp s phc:

( ) ( )
2
2 2 2
2 4 2 2 4 3 0
z z z z z z–
+ + + + + =

––––––––––––––––––––––––
áp s:
Câu 1: 2) 0 ≤ m ≤ 4
Câu 2: 1) x
1
3

=
2)
I
p
=
3)
[ ]
[ ]
y y
2;3
2;3
max 3; min 7
= - = -

Câu 3:
xq
S r
2
2 3
p
= ,
V r
3
3
p
=
Câu 4a: 1)
x t
BC y t
z t

: 1
1 3
ì
=
ï
= -
í
ï
= +
î
2)
1 11 21
0
5 5 5
2 2 2
x y z x y z
+ + - + - =

Câu 5a:
1
z i
= +

Tran Sú Tuứng www.MATHVN.com
www.MATHVN.com 7
Cõu 4b: 1) x y z
231 27 36
; ;
51 51 51
ổ ử

-
= = =
ỗ ữ
ố ứ
2)
2 2 2
x 1 y 3 z 2
760
( ) ( ) ( )
17
+ + - + =
Cõu 5b:
i
z z z
1 15
1; 4;
2
-
= - = - =





www.MATHVN.com - s 7

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3,0 im) Cho hm s y x mx x m
3 2
1 2

3 3
= - - + +

(
)
m
C
.
1) Kho sỏt s bin thiờn v v th ( C) ca hm s khi m = 0.
2) Tỡm im c nh ca h th hm s
(
)
m
C
.
Cõu II.(3,0 im)
1) Tỡm giỏ tr ln nht v nh nht ca hm s y x x
4 2
8 16
= - +
trờn on [1; 3].
2) Tớnh tớch phõn
x
I dx
x
7
3
3
2
0

1
=
+
ũ

3) Gii bt phng trỡnh
x
x
0,5
2 1
log 2
5
+
Ê
+

Cõu 3 (1,0 im) Cho t din S.ABC cú SA vuụng gúc vi mt phng (ABC), SA = a; AB =
AC= b,
ã
BAC
60

= . Xỏc nh tõm v bỏn kớnh mt cu ngoi tip t din S.ABC.
II. PHN RIấNG (3,0 im)
a. Theo chng trỡnh chun:
Cõu 4a (2,0 im) Trong khụng gian vi h to Oxyz:
a) Lp phng trỡnh mt cu cú tõm I(2; 1; 1) v tip xỳc vi mt phng

x y z
2 2 5 0

+ - + =

b) Tớnh khong cỏch gia hai mt phng:
x y z x y z
( ) : 4 2 12 0; ( ) :8 4 2 1 0
a b
- - + = - - - =
.
Cõu 5a(1,0 im) Gii phng trỡnh: z z
4 2
3 4 7 0
+ - =
trờn tp s phc.
B. Theo chng trỡnh nõng cao:
Cõu 4b (2,0 im) Trong khụng gian vi h to Oxyz, cho ng thng d cú phngtrỡnh:
x y z
1 1
2 1 2
- +
= = v hai mt phng
x y z x y z
( ) : 2 5 0; ( ):2 2 0
a b
+ - + = - + + =
. Lp
phng trỡnh mt cu tõm I thuc ng thng d v tip xỳc vi c hai mt phng
( ),( )
a b
.
Cõu 5b (1 im) Tớnh din tớch hỡnh phng gii hn bi th ca cỏc hm s:

y x y x y
, 2 , 0
= = - =


ỏp s:
Cõu 1: 2)
4
1; ; (1;0)
3
ổ ử
-
ỗ ữ
ố ứ

Cõu 2: 1) f x f x
1;3 1;3
max ( ) 25 , min ( ) 0
ộ ự ộ ự
- -
ở ỷ ở ỷ
= =
2) I
141
20
= 3)
x
x
5
1

7

< -





Cõu 3:
a b
r
2 2
4 3
= +
www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 8
Cõu 4a: 1)
( ) ( ) ( )
x y z
2 2 2
2 1 1 1
+ + - + - =
2) d
25
2 21
=
Cõu 5a:
z z i
7
1;

3
= =
Cõu 4b:
( ) ( ) ( )
x y z x y z
2 2 2
2 2 2
8 7 5 200 50
; 4 1 5
3 3 3 27 3
ổ ử ổ ử ổ ử
- + - + - = + + + + + =
ỗ ữ ỗ ữ ỗ ữ
ố ứ ố ứ ố ứ

Cõu 5b: S
7
6
=

www.MATHVN.com - s 8

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 ( 3 im) Cho hm s y x x
3 2
3 1
= - + -
.
1) Kho sỏt s bin thiờn v v th (C) ca hm s.
2) Vit phng trỡnh tip tuyn ca th (C) bit tip tuyn ú vuụng gúc vi ng

thng d y x
1
( ) : 2009
9
= - .
Cõu 2 ( 3 im).
1) Gii phng trỡnh:
x x3 3
2 2
log (25 1) 2 log (5 1)
+ +
- = + +

2) Tỡm giỏ tr ln nht v nh nht ca hm s y = x x x
3 2
2 3 12 2
+ - +
trờn
[ 1; 2 ]
-

3) Tớnh tớch phõn sau :
x
x
I e dx
x
2
2
2
0

sin2
(1 sin )
p
ộ ự
= +
ờ ỳ
+
ờ ỳ
ở ỷ
ũ

Cõu 3 ( 1 im) Cho t din u ABCD cnh a. Gi H l hỡnh chiu vuụng gúc ca A xung
mp(BCD). Tớnh din tớch xung quanh v th tớch khi tr cú ng trũn ỏy ngoi tip
tam giỏc BCD v chiu cao AH.
II. PHN RIấNG (3,0 im)
A. Theo chng trỡnh chun
Cõu 4a ( 2 im) Trong khụng gian Oxyz, cho M (1; 2; 2), N (2 ; 0; 1) v mt phng (P):
x y z
3 2 1 0
+ + - =
.
1) Vit phng trỡnh mt phng (Q) qua 2 im M, N v vuụng gúc (P).
2) Vit phng trỡnh mt cu (S) tõm I ( 1; 3; 2 ) v tip xỳc mt phng (P).
Cõu 5a (1 im) Tớnh din tớch hỡnh phng gii hn bi cỏc ng cú phng trỡnh:

y x x
3
3
= -
v

y x
=

B. Theo chng trỡnh nõng cao
Cõu 4b ( 2 im) Trong khụng gian Oxyz, cho A (1; 2; 2), B (2; 0; 1) v ng thng (d):
x y z
1 2
2 1 1
- +
= =
-
.
1) Vit phng trỡnh mt phng (P) qua 2 im A; B v song song vi (d).
2) Vit phng trỡnh mt cu (S) tõm A v tip xỳc vi ng thng (d). Tỡm ta tip
im.
Cõu 5b (1 im) Tớnh din tớch hỡnh phng gii hn bi th (C):
x x
y
x
2
4 4
1
- + -
=
-
, tim cn
xiờn ca (C) v hai ng thng x = 2; x = a (vi a > 2). Tỡm a din tớch ny bng 3.

ỏp s:
Cõu 1: 2)

y x y x
9 6; 9 26
= - - = - +

Cõu 2: 1) x = 2 2)
[ ] [ ]
y y
1;2 1;2
max 15; min 5
- -
= = -
3) I e
1 3
2ln2
2 2
p
= + -

Tran Sú Tuứng www.MATHVN.com
www.MATHVN.com 9
Cõu 3:
xq
a
S
2
2
2
3
p
= ;

a
V
3
6
9
p
=
Cõu 4a: 1)
x y z
5 7 17 0
- - - =
2) x y z
2 2 2
9
( 1) ( 3) ( 2)
14
+ + - + - =

Cõu 5a: S = 8
Cõu 4b: 1)
x y z
3 5 3 0
+ + + =
2) x y z
2 2 2
( 1) ( 2) ( 2) 14
- + - + + =
;
M
(3; 1; 1)

- -

Cõu 5b:
S a
ln( 1)
= -
; a e
3
1
= +


www.MATHVN.com - s 9

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3,0 im) Cho hm s:
y x x x
3 2
1
2 3
3
= - +
cú th (C).
1) Kho sỏt s bin thiờn v v th (C).
2) Da vo th (C), tỡm m phng trỡnh sau cú 3 nghim phõn bit:
x x x m
3 2
1
2 3 0
3

- + - + =

Cõu 2 (3,0 im)
1) Tỡm GTLN, GTNN ca hm s:
x
y
x
2
2 1
-
=
+
trờn on
1;3
ộ ự
ở ỷ
.
2) Tớnh tớch phõn:
x
I x x e dx
2
1
0
1
3
ổ ử
= +
ỗ ữ
ố ứ
ũ


3) Gii phng trỡnh:
x x 2
2 2
log (2 1).log (2 4) 3
+
+ + =

Cõu 3 (1,0im) Mt hỡnh nún cú nh S, khong cỏch t tõm O ca ỏy n dõy cung AB
ca ỏy bng a,
ã
SAO
30
=
o
,
ã
SAB
60
=
o
. Tớnh di ng sinh theo a .
II. PHN RIấNG ( 3,0 im)
A. Theo chng trỡnh chun:
Cõu 4a (2,0im) Trong khụng gian vi h to Oxyz cho im A (3; 1; 2) ng thng D
cú phng trỡnh:
{
1
x t y t z t
; ;

= - = = -
.
1) Tỡm to im H l hỡnh chiu vuụng gúc ca im A trờn ng thng.
2) Tỡm to giao im N ca ng thng v mt phng (P) cú phng trỡnh:
2 1 0
x z

- =
. Vit phng trỡnh ng thng d nm trong (P), bit d i qua im N v
vuụng gúc vi D.
Cõu 5a (1,0 im) Tỡm mụ un ca s phc :
i
z
i
1 3
2
+
=
+
.
B. Theo chng trỡnh nõng cao:
Cõu 4b (2,0im) Trong khụng gian vi h to Oxyz, cho mt cu (S) cú phng trỡnh:
2 2 2
4 2 4 7 0
x y z x y z
+ + - - + - =
v ng thng d :
x y z
1 2
2 2 1

- +
= =
-
.
1) Vit phng trỡnh mt phng (P) cha trc Ox v ct mt cu (S) theo mt ng
trũn cú bỏn kớnh bng 4.
2) Vit phng trỡnh ng thng D i qua tõm ca mt cu (S), ct v vuụng gúc vi
ng thng d.
Cõu 4b (1,0 im) Cho hm s
x x
y
x
2
4 3
1
+ -
=
+
. Chng minh rng tớch cỏc khong cỏch t mt
im bt k trờn th n hai ng tim cn ca nú luụn l mt hng s.

ỏp s:
www.MATHVN.com Traàn Só Tuøng
www.MATHVN.com 10
Câu 1: 2)
4
0
3
m
< <


Câu 2: 1)
1 1
7 3
y ymax ; min
= = -
2) I e
1 7
2 18
= -
3) x = 0 Câu 3: l a
2
=
Câu 4a: 1) H( 2; –1; 1) 2) N( 0 ; 1; –1);
{
1 3 1 2
d x t y t z t
: ; ;
= = + = - +

Câu 5a: z
2
=
Câu 4b: 1) (P): 2y + z = 0 2)
{
2 5 1 4 2 2
x t y t z t
: ; ;
D
= - = + = - -

Câu 5b:
3 2

www.MATHVN.com -  s 10

I. PHN CHUNG CHO TT C THÍ SINH (7 đim)
Câu 1 (3.0 đim) Cho hàm s
3 2
3 1
y x x
= + +
.
1) Kho sát s bin thiên và v đ th (C) ca hàm s .
2) Da vào đ th (C), bin lun s nghim ca phng trình sau theo m:

3 2
3 1
2
m
x x
+ + =

Câu 2 (3.0 đim)
1) Gii phng trình :
x x x2 2
2.2 9.14 7.7 0
- + =
.
2) Tính tích phân :
e

2x+lnx
I dx
x
1
=
ò
.
3) Tìm giá tr ln nht và nh nht ca hàm s
y x x x
3 2
6 9
= - + trên đon [2; 5].
Câu 3 (1.0 đim). Cho hình chóp đu S.ABC có đ dài cnh đáy bng a, cnh bên to vi mt
phng đáy mt góc
0
60
. Tính th tích khi chóp trên.
II. PHN RIÊNG ( 3,0 đim)
A. Theo chng trình chun:
Câu 4a (2.0 đim). Trong không gian vi h to đ Oxyz cho
A B C
(2;0; 1), (1; 2;3), (0;1;2)
- -
.
1) Vit phng trình mt phng (a) qua ba đim A, B, C.
2) Tìm hình chiu vuông góc ca gc to đ O trên mt phng (a).
Câu 5a (1.0 đim) Tìm phn thc và phn o ca s phc:
z i i
3
5 4 (2 )

= - + -
.
B. Theo chng trình nâng cao:
Câu 4b (2 đim) Trong không gian vi h to đ Oxyz, cho mt phng (P) và đng thng d
ln lt có phng trình:
9 5 4 0
P x y z
( ) :
+ + + =

1 10
1
1 2
x t
d y t
z t
:
ì
= +
ï
= +
í
ï
= - -
î
.
1) Tìm to đ giao đim A ca đng thng d vi mt phng (P).
2) Cho đng thng d
1
có phng trình

2 2 3
31 5 1
x y z
- - +
= =
-
. Chng minh hai đng
thng d và d
1
chéo nhau. Vit phng trình mt phng (Q) cha đng thng d và song
song vi đng thng d
1
.
Câu 5b (1 đim) Tính giá tr ca biu thc
( ) ( )
2 2
1 2 1 2
P i i= - + +

áp s:
Câu 1: 2)
m < 2 v m > 10 m = 2 v m = 10 2 < m < 10
s nghim 1 2 3
Tran Sú Tuứng www.MATHVN.com
www.MATHVN.com 11
Cõu 2: 1) x = 0; x = 1 2)
3
2
2
I e

= -
3)
[ ]
y
2;5
max 20
=
;
[ ]
y
2;5
min 0
=

Cõu 3:
a
V
3
3
12
=
Cõu 4a: 1)
2 3 0
x y z
+ + - =
2)
1 1
1
2 2
H

; ;
ổ ử
ỗ ữ
ố ứ
Cõu 5a: a = 7; b = 15
Cõu 4b: 1)
( 9;0;1)
A
-
2)
( ) : 8 9 =0
Q x y z
+ +
Cõu 5b: P = 2


www.MATHVN.com - s 11

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3 im) Cho hm s
3 2
3 1
y x x
= + +
.
1) Kho sỏt s bin thiờn v v th (C) ca hm s .
2) Vit phng trỡnh tip tuyn ca th (C) ti im cc i ca (C).
Cõu 2 (3 im)
1) Tớnh tớch phõn: I =
x

dx
x
4
0
tan
cos
p
ũ
.
2) Gii phng trỡnh: log
x x
2 2
(4.3 6) log (9 6) 1
- - - =

3) Tỡm GTLN v GTNN ca hm s y x x x
3 2
2 3 12 2
= + - +
trờn
[ 1;2]
-
.
Cõu 3 (1 im) Cho hỡnh chúp S.ABCD vi ỏy ABCD l hỡnh vuụng cnh a. SA vuụng gúc
vi mt phng ABCD, SA = 2a. Xỏc nh tõm v tớnh din tớch mt cu ngoi tip hỡnh
chúp S.ABCD.
II. PHN RIấNG ( 3,0 im)
A. Theo chng trỡnh chun:
Cõu 4a (2 im) Trong khụng gian vi h to Oxyz, cho cỏc im A(1; 0; 11), B(0; 1;10),
C(1; 1; 8), D(3; 1; 2).

1) Vit phng trỡnh ca mt phng (P) qua A, B, C.
2) Vit phng trỡnh mt cu tõm D, bỏn kớnh R = 5. Chng minh mt cu ny ct mt
phng (P).
Cõu 5a (1 im) Cho s phc:
z i i
2
(1 2 )(2 )
= - +
. Tớnh mụun ca s phc
z
.
B. Theo chng trỡnh nõng cao:
Cõu 4b (2 im) Trong khụng gian vi h ta Oxyz, cho im M(1;
-
1; 1), hai ng
thng
y
x z
1
( ) :
1
1 1 4
D
-
= =
-
,
( )
x t
y t

z
:
2
4
2
1

ù

ù

= -
D = +
=
v mt phng (P) :
y z
2 0
+ =
.
1) Tỡm im N l hỡnh chiu vuụng gúc ca im M lờn ng thng (D
2
) .
2) Vit phng trỡnh ng thng D ct c hai ng thng (D
1
), (D
2
) v nm trong
mt phng (P) .
Cõu 5b (1 im) Gii phng trỡnh sau: x x
2

3 2 3 0
- + =
trờn tp s phc.

ỏp s:
Cõu 1: 2) y = 5
Cõu 2: 1) I
2 1
= -
2) x = 1 3)
[ ]
y
1;2
max 15
-
=
;
[ ]
y
1;2
min 5
-
= -

www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 12
Cõu 3:
S a
2
6

p
=
Cõu 4a: 1)
x y z
2 3 13 0
+ + - =
2) x y z
2 2 2
( 3) ( 1) ( 2) 25
+ + - + - =

Cõu 5a:
125
z =
Cõu 4b: 1) N(4; 2; 1) 2)
x t
y t
z t
1 7
: 2
D

= +
ù
= -

ù
=



Cõu 5b:
z z i z i
1 2 3
1 3 1 3
0; ;
2 2 2 2
= = - + = - -



www.MATHVN.com - s 12

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 ( 3 im) Cho hm s:
3 2
2 3 1
y x x

= - + .
1) Kho sỏt s bin thiờn v v th (C) ca hm s.
2) Vit phng trỡnh tip tuyn ca (C) ti im cú honh x = 1.
Cõu 2 ( 3 im)
1) Tớnh tớch phõn sau: I =
x
dx
x
4
2
0
1 tan

.
cos
p
+
ũ

2) Gii bt phng trỡnh:
x
x
2
2 1
log 0
1
+
>
-

3) Cho hm s:
3 2
3 4
y x + x mx
= - + +
, (m l tham s). Tỡm m hm s nghch bin
trờn khong ( 0; +
Ơ
).
Cõu 3 (1 im) Cho lng tr u ABC.ABC cú ỏy l tam giỏc u ABC cnh bng a, (a
>0), gúc
ã
B CC

0
30
 Â
= . Gi V, VÂ ln lt l th tớch ca khi lng tr ABC.ABC v
khi a din ABCAB. Tớnh t s:
V
V
Â
.
II. PHN RIấNG: ( 3 im)
A. Theo chng trỡnh chun
Cõu 4a (2 im) Trong khụng gian Oxyz, cho mt cu (S) cú phng trỡnh:

2 2 2
2 4 6 11 0
x + y z x y z
+ - + - - =

1) Xỏc nh ta tõm v tớnh bỏn kớnh mt cu (S).
2) Vit phng trỡnh mt phng (P) tip xỳc vi (S) ti im M(1; 1; 1).
Cõu 5a (1 im) Hóy xỏc nh phn thc, phn o ca s phc sau:
i
z i
i
1
1
1 2
-
= + -
+


B. Theo chng trỡnh nõng cao
Cõu 4b (2 im) Trong khụng gian Oxyz, cho im M (2; 1; 0) v ng thng d cú phng
trỡnh:
x t
y t
z t
1 2
1

= +
ù
= - +

ù
= -

. Vit phng trỡnh ca ng thng d qua M, vuụng gúc v ct d.
Cõu 5b (1 im) Trờn mt phng phc, hóy tỡm tp hp cỏc im biu din cỏc s phc z
tha z i
2
- Ê
.

ỏp s:
Cõu 1: 2)
12 8
y x
= - -


Traàn Só Tuøng www.MATHVN.com
www.MATHVN.com 13
Câu 2: 1) I
3
2
=
2)
x x
2 1
< - Ú >
3)
m
3
£ -

Câu 3:
V
V
' 2
3
=

Câu 4a: 1) I(1; –2; 3), R = 5 2) (P): 3y – 4z – 7 =0
Câu 5a:
4 8
5 5
a b;
= = -

Câu 4b:

x t
d y t
z t
2
': 1 4
2
ì
= +
ï
= -
í
ï
= -
î
Câu 5b: Hình tròn có tâm I(0;1) và bán kính R = 2


www.MATHVN.com -  s 13

I. PHN CHUNG CHO TT C THÍ SINH (7 đim)
Câu 1: (3,0 đim) Cho hàm s:
3 2
3 4
y x x
-
= - + .
1) Kho sát s bin thiên và v đ th (C) ca hàm s đã cho.
2) Tìm m đ phng trình
3 2
3 0

x x m
- + =
có 3 nghim phân bit.
Câu II: (3,0 đim)
1) Gii phng trình:
2
4 2
2 8 1
x x x
log ( ) log
+ = +
.
2) Tính tích phân: I =
x
dx
x
2
2
0
sin2
1 cos
p
+
ò

3) Tìm giá tr ln nht và giá tr nh nht ca hàm s: f(x) =
x x
2
2+ - .
Câu 3: (1 đim) Cho khi chóp S.ABC có hai mt ABC, SBC là các tam giác đu cnh a và

SA =
a
3
2
. Tính th tích khi chóp S.ABC theo a.
II. PHN RIÊNG (3,0 đim)
A. Theo chng trình Chun:
Câu 4a: (2,0 đim) Trong không gian vi h to đ Oxyz, cho 2 đng thng:
D
1
:
x y z
1 1 2
2 1 2
+ - -
= =
- -
, D
2
:
x t
y t
z t
1 2
2
1 2
ì
= -
ï
= - +

í
ï
= +
î

1) Chng minh rng hai đng thng D
1
và D
2
song song vi nhau.
2) Tính khong cách gia hai đng thng D
1
và D
2
.
Câu 5a: (1,0 đim) Tìm môđun ca s phc:
i
z
i
3 2
2
+
=
-

B. Theo chng trình Nâng cao:
Câu 4b: (2,0 đim) Trong không gian vi h to đ Oxyz, cho 2 đng thng:
D
1
:

x y z
2 1 1
1 2 3
- + -
= =
-
, D
2
:
x t
y t
z t
2
1 2
ì
=
ï
= -
í
ï
= +
î

và mt cu
2 2 2
2 4 6 2 0
S x y z x y z( ): – – –
+ + + =
.
1) Chng minh rng hai đng thng D

1
, D
2
chéo nhau và tính khong cách gia hai
đng thng đó.
2) Vit phng trình mt phng (a) song song vi hai đng thng D
1
, D
2
và ct mt
cu (S) theo giao tuyn là đng tròn (C) có chu vi bng 8p.
www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 14
Cõu 5b: (1,0 im) Gii phng trỡnh sau trờn tp hp s phc:
2
2 1 2 8 0
z i z + i
( )
+ =
.

ỏp s:
Cõu 1: 2) 0 < m < 4
Cõu 2: 1) x = 4 2) I = ln2 3)
2 2
2
max f x
;
( )
ộ ự

-
ở ỷ
=
,
2 2
2
x f x
;
min ( )
ộ ự
-
ở ỷ
= -

Cõu 3:
a
V
3
3
16
= Cõu 4a: 2) d
5
= Cõu 5a:
z
65
| |
5
=

Cõu 4b: 1) d

17
35
= 2)
5 3 2 0
x y z

=
Cõu 5b: z
1
= 2 ; z
2
= 4i


www.MATHVN.com - s 14

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3 im) Cho hm s
3 2
6 9
y x x x
= + .
1) Kho sỏt s bin thiờn v v th (C) ca hm s ó cho.
2) Tớnh din tớch hỡnh phng gii hn bi th (C), trc honh v hai ng thng
x = 1, x = 2.
Cõu 2 (3 im)
1) Tớnh tớch phõn I =
x
x e dx
1

0
(2 1)+
ũ
.
2) Gii phng trỡnh: log
2
(x 3) + log
2
(x 1) = 3.
3) Cho hm s
2
3
y x
cos= . Chng minh y" + 18.(2y 1) = 0.
Cõu 3 (1 im) Cho khi chúp S.ABCD cú ABCD l hỡnh vuụng cnh a, SB =
a
3
v SA
vuụng gúc vi mt phng (ABCD). Tớnh th tớch khi chúp theo a.
II. PHN RIấNG (3 im)
A. Theo chng trỡnh chun:
Cõu 4a (2 im) Trong khụng gian vi h to Oxyz, cho tam giỏc ABC cú A(-1, 1, 2),
B(0, 1, 1) v C(1, 0, 4).
1) Chng minh tam giỏc ABC l tam giỏc vuụng.
2) Gi M l im tho
MB
uuur
= 2
MC
uuur

. Vit phng trỡnh mt phng (P) qua M v vuụng
gúc vi ng thng BC.
Cõu 5a (1 im) Tỡm nghim phc ca phng trỡnh bc hai
2
2 5 4 0
z z

+ =
.
B. Theo chng trỡnh nõng cao:
Cõu 4b (2 im) Trong khụng gian vi h to Oxyz, cho im I(3, 4, 2) v mt phng (P)
cú phng trỡnh
4 2 1 0
x y z

+ + =
.
1) Vit phng trỡnh mt cu (S) cú tõm I v tip xỳc mt phng (P).
2) Cho ng thng d cú phng trỡnh
x
1
=
y
2
=
z
1
3
-
. Vit phng trỡnh ng thng

D vuụng gúc vi ng thng d, qua im I v song song vi mt phng (P).
Cõu 5b (1 im) Cho hm s y =
x mx
x
2
1
1
- +
-
. Tỡm m hm s cú 2 im cc i v cc tiu
tho
5
C CT
y y
.
=

.

ỏp s:
Traàn Só Tuøng www.MATHVN.com
www.MATHVN.com 15
Câu 1: 2) S
13
4
=

Câu 2: 1) I = 1 + e 2) x = 5
Câu 3:
a

V
3
2
3
=
Câu 4a: 2)
3 24 0
x y z
– –
+ =

Câu 5a: z =
i
5 7
4
+
; z =
i
5 7
4
-

Câu 4b: 1)
2 2 2
3 4 2 21
x y z( – ) ( – ) ( – )
+ + =
2)
{
3 4 4 11 2 6

x t y t z t
: – ; ; –
D
= = + =
Câu 5b: m = –3




www.MATHVN.com -  s 15

I. PHN CHUNG CHO TT C THÍ SINH (7 đim)
Câu 1 (3 đim) Cho hàm s
x
y x x
3
2
11
3
3 3
= - + + -
.
1) Kho sát s bin thiên và v đ th (C) ca hàm s đã cho.
2) Tìm trên đ th (C) hai đim phân bit M, N đi xng nhau qua trc tung.
Câu 2 (3 đim)
1) Tính tích phân:
I x xdx
2
0
( 1)sin2

p
= +
ò

2) Gii phng trình:
1
4 2 2 2 1 2 1 2 0
x x x x
y( )sin( )
+
- + - + - + =

3) Gii phng trình:
1
3 3
3 1 3 3 6
x x
log ( )log ( )
+
- - =

Câu 3 (1 đim) Trong mt phng (P) cho tam giác ABC vuông cân ti B ni tip trong mt
đng tròn C I a
( ; 2)
. Trên đng thng vuông góc vi mt phng (P) ti đim I, ly
mt đim S và trên đng tròn (C) ly mt đim M sao cho din tích ca hai tam giac
SAC và SBM đu bng a
2
2
. Tính theo a th tích ca khi t din SABM.

II. PHN RIÊNG (3 đim)
A. Theo chng trình chun
Câu 4a (2 đim) Trong không gian vi h to đ Oxyz, cho mt phng (P): 4x - 3y + 11z -26
= 0 và hai đng thng (d
1
):
x
1
-
=
y
3
2
-
=
z
1
3
+
, d
2
:
x
4
1
-
=
y
1
=

z
3
2
-
.
1) Chng minh rng d
1
và d
2
chéo nhau.
2) Vit phng trình đng thng D nm trên (P), đng thi D ct c d
1
và d
2
.
Câu 5a (1 đim) Cho hình chóp t giác đu S.ABCD có cnh đáy bng a, gi SH là đng
cao ca hình chóp. Khong cách t trung đim I ca SH đn mt bên (SBC) bng b.
Tính th tích ca khi chóp S.ABCD.
B. Theo chng trình nâng cao
Câu 4b (2 đim) Trong không gian vi h to đ Oxyz, cho đim M(1; 1; 1) và hai đng
thng
( )
x y z
d
1
2 1
:
3 1 2
+ -
= =

-
,
(
)
{
d x t y t z t
2
: 2 2 ; 5 ; 2
= - + = - = +
.
1) Xét v trí tng đi ca hai đng thng (d
1
), (d
2
).
2) Vit phng trình đng thng (d) đi qua M(1; 1; 1), ct đng thng (d
1
) và vuông
góc vi đng thng (d
2
).
www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 16
Cõu 5b (1 im) Tớnh din tớch hỡnh phng gii hn bi
y x
= v ng thng (d): y = 2 x

ỏp s:
Cõu 1: 2) M N
16 16

3; , 3;
3 3
ổ ử ổ ử
-
ỗ ữ ỗ ữ
ố ứ ố ứ

Cõu 2: 1) I
1
4
p
= +
2) 1 1
2
x y k
;
p
p
ổ ử
= = - - +
ỗ ữ
ố ứ
(k ẻ Z) 3)
3
3
10
28
27
x
x

log
log

=


=


Cõu 3:
V a
3
2
3
= Cõu 4a: 2)
x y z
2 7 5
:
5 8 4
D
+ - -
= =
- -
Cõu 5a:
a b
V
a b
3
2 2
2

3 16
=
-

Cõu 4b: 2)
x y z
d
1 1 1
:
3 1 1
- - -
= =
-
Cõu 5b: S
7
6
=


www.MATHVN.com - s 16

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1: (3 im) Cho hm s y x mx m x
3 2 2
2 2
= - + -
(m l tham s) (1)
1) Kho sỏt s bin thiờn v v th hm s khi m = 1.
2) Tỡm m hm s t cc tiu ti x = 1.
Cõu2: (3 im )

1) Gii phng trỡnh :
x x x x
5 3 5 3
log .log log log
= +
2) Tớnh tớch phõn : I =
( )
x x x dx
2
0
sin2 2 cos .
p
+
ũ

3) Tớnh din tớch hỡnh phng gii hn bi th hm s
2
x
y e
= , trc honh, trc tung
v ng thng x = 2.
Cõu3: (1 im) Cho hỡnh chúp S.ABC cú SA ^ (ABC) v SA = 3a, tam giỏc ABC cú AB =
BC = 2a, gúc ABC bng
0
120
. Tớnh th tớch khi chúp S.ABC.
II. PHN RIấNG (3im)
A. Theo chng trỡnh chun :
Cõu 4a: (2 im) Trong khụng gian vi h trc ta Oxyz cho ng thng (d) cú phng
trỡnh

1
1 2
x t
y t
z t

= +
ù
= -

ù
= - +

v mt phng (P):
2 5 0
x y z
- + - =

1) Tỡm giao im A ca ng thng (d) v mt phng (P).
2) Vit phng trỡnh mt cu tõm I(1; 2; 3) v tip xỳc vi mt phng (P).
Cõu 5a: (1 im) Tớnh th tớch khi trũn xoay sinh ra do hỡnh phng gii hn bi cỏc ng

y x y x e
ln , 0,
= = =
quay quanh trc Ox.
B. Theo chng trỡnh nõng cao :
Cõu 4b: (2 im) Trong khụng gian vi h trc Oxyz, cho cỏc im A(1;0;0), B(0;2;0),
C(0;0;3) v D(1; 2; 3) .
1) Lp phng trỡnh mt cu qua bn im A, B, C, D.

2) Gi (d) l ng thng qua D v song song vi AB. Tớnh khong cỏch gia (d) v
mp(ABC).
Cõu 5b: (1 im) Gii h phng trỡnh :
x x y
x y
2
2 2
3 9
log log ( 1) 1
-

=
ù

= + +
ù



Tran Sú Tuứng www.MATHVN.com
www.MATHVN.com 17
ỏp s:
Cõu 1: 2) m = 1
Cõu 2: 1) x = 1, x = 15 2) I
4
3
p
= -
3)
e

S
4
1
2
-
=
Cõu 3: V a
3
3
=
Cõu 4a: 1) A(2; 1; 1) 2)
2 2 2
3
1 2 3
2
x y z( ) ( ) ( )
- + + + - =

Cõu 5a:
V e
( 2)
p
= -

Cõu 4b: 1)
2 2 2
3 2
6 7 0
2 3
x y z x y z

+ + + + - - =
2) d
24
7
=
Cõu 5b: (2; 1),
1
1
2
;
ổ ử
- -
ỗ ữ
ố ứ


www.MATHVN.com - s 17

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3,0 im).
1) Kho sỏt s bin thiờn v v th
C
( )
ca hm s y x x
3 2
3 2
= - + -
.
2) Tỡm tt c cỏc giỏ tr ca tham s m ng thng
y mx

2
= -
ct th
C
( )
ti ba
im phõn bit.
Cõu 2 (3,0 im )
1) Gii bt phng trỡnh: x
2
3
log ( 1) 2
+ <

2) Tớnh tớch phõn:
x
I dx
x
3
3
0
sin
cos
p
=
ũ

3) Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s
x
y xe

-
= trờn on
[
]
0;2
.
Cõu 3 (1,0 im) Cho hỡnh chúp S.ABC cú ỏy ABC l tam giỏc u, cỏc cnh bờn u bng
a, gúc gia cnh bờn v mt ỏy bng
0
30
. Tớnh th tớch khi chúp S.ABC theo a.
II. PHN RIấNG (3,0 im )
A. Theo chng trỡnh Chun:
Cõu 4a (2,0 im) Trong khụng gian to
Oxyz
, cho im A c xỏc nh bi h thc
OA i j k
2 3
= + +
uuur r r r
v ng thng d cú phng trỡnh
x t
y t
z t
1
2

=
ù
= +


ù
= -

(
t

Ă
)
1) Vit phng trỡnh ca mt phng
P
( )
i qua A v vuụng gúc vi ng thng d.
2) Tớnh khong cỏch t im A n ng thng d.
Cõu 5a (1,0 im) Tỡm mụ un ca s phc z
i
17
2
1 4
= +
+
.
B. Theo chng trỡnh Nõng cao:
Cõu 4b (2,0 im) Trong khụng gian to
Oxyz
, cho im A c xỏc nh bi h thc
OA i j k
2
= + +
uuur r r r

v mt phng
P
( )
cú phng trỡnh
x y z
2 3 12 0
- + + =
.
1) Vit phng trỡnh chớnh tc ca ng thng d i qua A v vuụng gúc vi
P
( )
.
2) Tớnh khong cỏch gia ng thng OA v mt phng
P
( )
.
Cõu 5b (1,0 im) Cho s phc
i
z
i
5 3 3
1 2 3
+
=
-
. Tớnh
z
12
.


www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 18
ỏp s:
Cõu 1: 2) m
9
0
4
ạ <

Cõu 2: 1)
( 4; 1) ( 1;2)
- - ẩ -
2) I
3
2
=
3)
[ ]
y e
1
0;2
max
-
= ;
[ ]
y
0;2
min 0
=


Cõu 3:
a
V
3
3 3
32
=
Cõu 4a: 1)
P x y z
( ) : 0
+ - =
2)
d
2 6
3
=
Cõu 5a:
5
z
=

Cõu 4b: 1)
x z z
1 2 1
1 2 3
- - -
= =
-
2)
d

6 14
7
=
Cõu 5b: z
12 12
2 4096
= =



www.MATHVN.com - s 18

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3 im): Cho hm s
y x x
3
3
= -
, cú th (C).
1) Kho sỏt s bin thiờn v v th (C) ca hm s ó cho.
2) Xỏc nh m sao cho phng trỡnh x x m
3
3 1 0
- + - =
cú ba nghim phõn bit.
3) Tớnh din tớch hỡnh phng gii hn bi th (C) v trc honh.
Cõu 2 (3im):
1) Gii bt phng trỡnh sau:
x
x x

2 2 2
log 8 3log log 2
4
- + >

2) Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s y x
x
1
2 1
2 1
= + +
-
trờn on
1;2
ộ ự
ở ỷ
.
3) Tớnh tớch phõn:
x
I x e xdx
2
2
0
(sin ).2
p
= +
ũ

Cõu 3 (1 im): Mt hỡnh tr cú ng kớnh ỏy bng 2a, ng cao bng a
3

. Tớnh din
tớch xung quanh v th tớch ca hỡnh tr.
B. PHN RIấNG (3 im)
A. Theo chng trỡnh chun
Cõu 4a (2 im) Trong khụng gian Oxyz, cho mt phng (Q) v mt cu (S) ln lt cú
phng trỡnh:
0
x y z
+ + =
;
2 2 2
2 2 4 3 0
x y z x y z
+ + - + - - =
.
1) Vit phng trỡnh ca ng thng d i qua tõm mt cu (S) v vuụng gúc vi mt
phng (Q).
2) Vit phng trỡnh ca mt phng (P) song song vi Oz, vuụng gúc vi (Q) v tip
xỳc vi mt cu (S).
Cõu 5a (1 im) Gii phng trỡnh sau trờn tp s phc:
2
6 29 0
x x

+ =
.
B. Theo chng trỡnh nõng cao
Cõu 4b (2 im) Trong khụng gian vi h to Oxyz, cho hai ng thng :

{

x y z
x t y t z
1 2
3 1
: 1 ; 1 ; 2 :
1 2 1
D D
- -
= + = - - = = =
-

1) Vit phng trỡnh mt phng (P) cha ng thng
1
D
v song song vi
2
D
.
2) Xỏc nh im A trờn
1
D
v im B trờn
2
D
sao cho on AB cú di nh nht.
Traàn Só Tuøng www.MATHVN.com
www.MATHVN.com 19
Câu 5b (1 đim) Cho hàm s
x x
y

x
2
1
1
- -
=
+
có đ th (C). Vit phng trình các đng thng
đi qua đim A(0 ; –5) và tip xúc vi (C).

áp s:
Câu 1: 2)
m
1 3
- < <
3) S
9
2
=

Câu 2: 1)
x
4
>
2)
[ ]
y
1;2
16
max

3
= ,
[ ]
y
1;2
min 4
=
3) I e
2
4
1
p
= +

Câu 3:
2
2 3
xq
S a
p
= ,
V a
3
3 .
p
=
Câu 4a: 1)
{
d x t y t z t
: 1 ; 1 ; 2

= + = - + = +
2) x y x y
2 3 2 0; 2 3 2 0
- + + + = - + + - =

Câu 5a:
x i
3 2 5
= ±
Câu 4b: 1)
2 0
P x y z
( ) : –
+ + =
2) A(1; –1; 2), B(3; 1; 0)
Câu 5b: d
1
: y = –5 và d
2
: y = –8x – 5

www.MATHVN.com -  s 19

I. PHN CHUNG CHO TT C THÍ SINH (7 đim)
Câu 1: (3,0 đim) Cho hàm s:
y x x x
3 2
3 3 1
= - + -
có đ th (C).

1) Kho sát s bin thiên và v đ th (C) ca hàm s.
2) Tính din tích hình phng gii hn bi (C), trc Ox, trc Oy.
Câu 2: (3,0 đim)
1) Tìm giá tr ln nht, giá tr nh nht ca hàm s: y x
x
4
= +
trên đon [1;3].
2) Tính tích phân:
e
I x xdx
( 1).ln
1
= +
ò

3) Gii phng trình:
x
x
2
log (3.2 1) 2 1
- = +
.
Câu 3: (1,0 đim) Cho tam giác ABC vuông ti B, cnh AB = a, BC = a
2
. Quay tam giác
ABC quanh trc AB mt góc
0
360
to thành hình nón tròn xoay. Tính din tích xung

quanh và th tích ca khi nón.
II. PHN RIÊNG: (3,0 đim)
A. Theo chng trình chun:
Câu 4a: (2,0 đim) Trong không gian cho đim M(1; –2;–1) và đng thng (d):
x t
y t
z t
2
2
1 2
ì
= -
ï
=
í
ï
= +
î
.
1) Lp phng trình mt phng (P) qua M và vuông góc vi (d).
2) Lp phng trình mt cu có tâm là gc ta đ và tip xúc vi mt phng (P).
Câu 5a: (1,0 đim) Gii phng trình: x x x
3 2
0
+ + =
trên tp s phc.
B. Theo chng trình nâng cao:
Câu 4b: (2,0 đim) Trong không gian to đ Oxyz, cho đim M(1; 1; –2) và mt phng (P):
2 2 3 0
x y z


+ + =
.
1) Tìm ta đ đim M¢ đi xng vi M qua mt phng (P) .
2) Lp phng trình mt cu tâm M và tip xúc vi mt phng (P).
Câu 5b: (1,0 đim) Vit s phc
1
z i

= +
di dng lng giác ri tính
15
1
i
( )
+ .
––––––––––––––––––
áp s:
www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 20
Cõu 1: 2) S
1
4
=

Cõu 2: 1) y
[1;3]
max 5
=
; y

[1;3]
min 4
=
2)
e
I
2
5
4
+
= 3) x = 0 ; x = 1
Cõu 3:
xq
S a
2
6
p
= ;
a
V
3
2
3
p
=
Cõu 4a: 1)
2 2 7 0
x y z
- + + + =
2) S x y z

2 2 2
49
( ) :
9
+ + =
Cõu 5a:
x x i x i
1 2 3
1 3 1 3
0; ;
2 2 2 2
= = - + = - -

Cõu 4b: 1) M Â(5; 5; 4) 2) S x y z
2 2 2
( ) : 9
+ + =

Cõu 5b: i i
15
(1 ) 128 2 cos sin
4 4
p p
ổ ử
+ = -
ỗ ữ
ố ứ




www.MATHVN.com - s 20

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3 im) Cho hm s
3 2
3 2
y x x
= + -
.
1) Kho sỏt s bin thiờn v v th (C) ca hm s ó cho.
2) Bng phng phỏp th, tỡm m phng trỡnh sau cú ỳng 3 nghim:

3 2
3 0
x x mlog
+ - =

Cõu 2 (3 im)
1) Gii phng trỡnh:
1 2
49 40 7 2009 0
x x
.
+ +
+ - =
.
2) Tớnh tớch phõn sau:
x
I e x dx
2

sin
0
( 1)cos .
p
= +
ũ

3) Tỡm GTLN, GTNN ca hm s
2
8
y x x
ln
= - trờn on [1 ; e].
Cõu 3 (1 im) Cho hỡnh chúp t giỏc u S.ABCD cú cnh ỏy bng a, gúc gia cnh bờn
v ỏy bng 45
0
. Hóy xỏc nh tõm v tớnh th tớch khi cu ngoi tip hỡnh chúp trờn.
II. PHN RIấNG ( 3 im)
A. Theo chng trỡnh chun:
Cõu 4a (2 im) Trong khụng gian vi h ta Oxyz, cho mt cu (S) cú phng trỡnh:

2 2 2
4 6 2 2 0
x y z x y z
+ + - + - - =
v mt phng (a):
2 2 3 0
x y z
- + + =
.

1) Hóy xỏc nh tõm v tớnh bỏn kớnh mt cu (S).
2) Vit phng trỡnh mt phng (b) song song vi mt phng (a) v tip xỳc vi mt
cu (S). Tỡm to tip im.
Cõu 5a (1 im) Tỡm nghim phc z ca phng trỡnh sau:
2 3 4 5 3 4
i z i i
( ).
- - + = -
.
B. Theo chng trỡnh nõng cao:
Cõu 4b (2 im) Trong khụng gian vi h ta Oxyz, cho ng thng (d) cú phng trỡnh:
(d):
x t
y t t R
z t
2
3 2 ( )
4 2

=- -
ù
= + ẻ

ù
= +

v im M(1; 0; 3).
1) Vit phng trỡnh mt phng (a) cha (d) v qua M.
2) Vit phng trỡnh mt cu tõm M v tip xỳc vi (d). Tỡm to tip im.
Tran Sú Tuứng www.MATHVN.com

www.MATHVN.com 21
Cõu 5b (1 im) Tỡm tt c cỏc im trong mt phng biu din s phc z bit rng:

3 2 5
z i z i
- + = +
.

ỏp s:
Cõu 1: 2) 1 < m < 10
4

Cõu 2: 1) x = 0 2) I = e 3)
e
y
[1; ]
max 1
=
v
e
y
[1; ]
min 4 8ln2
= -
Cõu 3:
a
V
3
2
3

p
=
Cõu 4a: 1) I(2; 3; 1), R = 4 2)
2 2 21 0
x y z
( ) :
b
- + - =
,
14 13 11
3 3 3
T ; ;
ổ ử
-
ỗ ữ
ố ứ

Cõu 5a:
z i
41 3
13 13
= +
Cõu 4b: 1)
4 1 0
x y z
+ + - =
2)
2 2 2
1 3 2
x y z

( ) ( )
+ + + - =
; T( 1; 1; 2)
Cõu 5b: x + y +2 = 0


www.MATHVN.com - s 21

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3 im): Cho hm s y x x
2
( 3)
= - cú th (C).
1) Kho sỏt s bin thiờn v v th (C) ca hm s.
2) Tip tuyn vi (C) ti gc ta O ct (C) ti A (A ạ O). Tỡm ta im A.
Cõu 2 (3 im)
1) Gii phng trỡnh : x x x
2
2 1
2
2
log 3log log 2
+ + =
.
2) Tớnh tớch phõn:
x
I e dx
1
0
.

=
ũ

3) Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s
x
y x
x
sin
; 0; .
2 cos
p
ộ ự
= ẻ
ở ỷ
+

Cõu 3 (1 im): Tớnh theo a th tớch ca khi chúp t giỏc u bit cnh bờn cú di bng a
v to vi mt ỏy mt gúc
0
60 .

II. PHN RIấNG ( 3 im):
A. Theo chng trỡnh chun:
Cõu 4a (2 im): Trong khụng gian vi h to Oxyz, cho 4 im
A B
(6; 2;3); (0;1;6);
-

C D
(2;0; 1); (2; 1;3)

- -
.
1) Vit phng trỡnh mt phng (ABC). Suy ra A, B, C, D l 4 nh ca mt t din.
2) Tớnh bỏn kớnh ca mt cu (S) cú tõm D v tip xỳc vi mt phng (ABC). Tỡm tip
im ca (S) v mp (ABC).
Cõu 5a (1 im): Cho s phc
z x i (x R)
3
= + ẻ
. Tớnh
z i
-
theo x; t ú xỏc nh tt c cỏc
im trong mt phng to biu din cho cỏc s phc z, bit rng z i
5
- Ê
.
B.Theo chng trỡnh nõng cao:
Cõu 4b (2 im): Trong khụng gian vi h to Oxyz cho 4 im
A B
(1; 1;1); (1; 1; 1);
- - -

C
(2; 1;0);
-
D
(1; 2;0)
-
.

1) Chng minh A, B, C, D l 4 nh ca mt t din. Vit phng trỡnh mp (ABC).
2) Vit phng trỡnh mt cu (S) ngoi tip t din ABCD. T ú tỡm tõm ca ng
trũn ngoi tip tam giỏc ABC.
www.MATHVN.com Tran Sú Tuứng
www.MATHVN.com 22
Cõu 5b (1 im): Tỡm trờn th (C) ca hm s y x
x
1
= +
tt c nhng im cú tng cỏc khong
cỏch n hai tim cn l nh nht.

ỏp s:
Cõu 1: 2) y = 9x ;
A
(6;54)

Cõu 2: 1) x x
1
; 2
2
= = 2) I = 2 3)
[ ] [ ]
y y
0; 0;
3
max ; min 0
3
p p
= =


Cõu 3:
a
V
3
3
12
=
Cõu 4a: 1)
x y
2 2 0
+ - =
2)
R
2 5
5
=
,
H
12 1
; ;3
5 5
ổ ử
-
ỗ ữ
ố ứ

Cõu 5a: z i x
2
16

- = +
; Tp hp l on thng AB vi
A B
( 3;3); (3;3)
-

Cõu 4b: 1)
y
1 0
+ =
2) x y z
2 2 2
( 1) ( 1) 1
- + + + =
; I ( 1; 1; 0)
Cõu 5b:
2
M M
1
4 4 4 4
1 1 2 1 2 1
; ; ;
2 2 2 2
ổ ử ổ ử
+ +
- -
ỗ ữ ỗ ữ
ỗ ữ ỗ ữ
ố ứ ố ứ


www.MATHVN.com - s 22

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3 im) Cho hm s
3 2
3 1
y x x
= +
.
1) Kho sỏt s bin thiờn v v th (C) ca hm s ó cho.
2) Bin lun theo m s nghim ca phng trỡnh:
3 2
3 0
x x m
+ =
.
Cõu 2(3 im)
1) Gii phng trỡnh:
3 4 4 2 1 0
x x
. .
- =
.
2) Tớnh tớch phõn: I =
x x dx
2
0
1 2sin .cos .
p
+

ũ

3) Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s
y x
sin
=
trờn on
7
;
6 6
p p
ộ ự
ờ ỳ
ở ỷ
.
Cõu 3 (1 im) Cho hỡnh chúp S.ABCD cú ỏy ABCD l hỡnh vuụng cnh bng a, SA = a
3

v SA vuụng gúc vi mt phng ỏy. Tớnh theo a th tớch khi t din SACD v tớnh
cụsin ca gúc gia hai ng thng SB, AC.
II. PHN RIấNG ( 3 im )
A. Theo chng trỡnh chun:
Cõu 4a (2 im) Trong khụng gian vi h trc ta Oxyz, cho im A( 2, 3, 1) v mt
phng (P):
2 5 0
x y z

+ =
.
1) Vit phng trỡnh ca ng thng d i qua A v vuụng gúc vi mt phng (P).

2) Tỡm ta im AÂ i xng vi A qua mt phng (P).
Cõu 5a (1 im) Tỡm mụun ca s phc z, bit
2
1 0
z z
+ + =
.
B. Theo chng trỡnh nõng cao:
Cõu 4b (2 im) Trong khụng gian vi h trc ta Oxyz, cho im A( 1; 2; 3 ) v ng
thng d cú phng trỡnh
{
2 1 2
x t y t z t
; ;
= + = + =
.
1) Hóy tỡm ta ca hỡnh chiu vuụng gúc ca A trờn d.
2) Vit phng trỡnh mt cu tõm A tip xỳc vi d.
Tran Sú Tuứng www.MATHVN.com
www.MATHVN.com 23
Cõu 5b (1 im) Gii h phng trỡnh:
x y
x y
4 4 4
log log 1 log 9
20 0

+ = +

+ - =




ỏp s:
Cõu 1:
m < 0 v m > 4 m = 0 v m = 4 0 < m < 4
s nghim 1 2 3
Cõu 2: 1)
x
2
2 7
log
3
+
=
2)
( )
I
1
3 3 1
3
= -
3) y y
7 7
; ;
6 6 6 6
1
min ; max 1
2
p p p p

ộ ự ộ ự
ờ ỳ ờ ỳ
ở ỷ ở ỷ
= - =

Cõu 3:
a
V
3
3
6
= ;
2
cos
4
a
=

Cõu 4a: 1)
x t
d y t
z t
2
: 3 2
1

= +
ù
= -


ù
= - +

2) A
16 11 7
; ;
3 3 3
ổ ử
Â
-
ỗ ữ
ố ứ
Cõu 5a:
1
z
=

Cõu 4b: 1)
7 5 1
3 3 3
H
; ;
ổ ử
ỗ ữ
ố ứ
2) (x + 1)
2
+ (y 2)
2
+ (z 3)

2
=
55
3

Cõu 5b:
x
y
2
18

=

=

hoc
x
y
18
2

=

=


www.MATHVN.com - s 23

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1 (3,0 im) Cho hm s:

3 2
3 2
y x + x mx m

= + + (m l tham s).
1) Tỡm m hm s cú cc i v cc tiu.
2) Kho sỏt s bin thiờn v v th hm s khi m = 3.
Cõu 2 (3,0 im)
1) Tớnh din tớch hỡnh phng gii hn bi th cỏc hm s y = e
x
, y = 2 v ng
thng x = 1.
2) Tớnh tớch phõn:
x
I dx
x
2
2
0
sin2
4 cos
p
=
-
ũ

3) Gii bt phng trỡnh:
2
2 2 3
x x x

log( ) log( )
- < -

Cõu 3 (1,0 im) Mt mt phng qua nh S ca mt hỡnh nún ct ng trũn ỏy theo cung

AB
cú s o bng
a
. Mt phng (SAB) to vi ỏy gúc
b
. Bit khong cỏch t tõm O
ca ỏy hỡnh nún n mt phng (SAB) bng a. Hóy tỡm th tớch hỡnh nún theo
a
,
b
v a
II. PHN RIấNG ( 3 im )
A. Theo chng trỡnh chun :
Cõu 4a (2,0 im): Trong khụng gian vi h ta Oxyz, cho ba im :A(1;0;1); B(1;2;1);
C(0;2;0). Gi G l trng tõm ca tam giỏc ABC.
1) Vit phng trỡnh ng thng OG.
2) Vit phng trỡnh mt cu (S) i qua bn im O, A, B, C.
Cõu 5a (1,0 im) Tỡm hai s phc bit tng ca chỳng bng 2 v tớch ca chỳng bng 3.
B. Theo chng trỡnh nõng cao
Cõu 4b (1,0 im): Trong khụng gian vi h to Oxyz, lp phng trỡnh mt phng (P)
qua M(2; 1; 2), song song vi Oy v vuụng gúc vi mt phng (Q): 2x y + 3z + 4 = 0
www.MATHVN.com Traàn Só Tuøng
www.MATHVN.com 24
Câu 5b (2,0 đim): Cho hàm s
x m x

y
x m
2
2 ( 1) 3
+ + -
=
+
. Tìm các giá tr ca m sao cho tim cn
ca đ th hàm s tip xúc vi parabol
2
5
y x
= +
.
–––––––––––––––––––––––
áp s:
Câu 1: 1)
m
3
<

Câu 2: 1)
S e
2 ln2 4
= + -
2) I
4
ln
3
= 3)

5
11
21 <<Ú-< xx
Câu 3:
a
V
3
2 2
3sin .cos .cos
2
p
a
b b
=
Câu 4a: 1) x t y t z
2 4
; ; 0
3 3
ì
= = =
í
î
2) 2)1()1(
222
=+-+- zyx
Câu 5a:
z i z i
1 2
1 2; 1 2
= - = +

Câu 4b:
3 2 2 0
(P) x z
:
- - =

Câu 5b: m = –3





www.MATHVN.com -  s 24

I. PHN CHUNG CHO TT C THÍ SINH (7 đim)
Câu 1 (3,0 đim). Cho hàm s y x x
3 2
2 6 1
= - + +
có đ th (C).
1) Kho sát s bin thiên và v đ th (C).
2) Da vào đ th (C), bin lun theo m s nghim ca phng trình:
x x m
3 2
5
2 6 0
+
- + =
.
Câu 2 (3,0 đim).

1) Gii phng trình:
x x x
3.16 –12 – 4.9 0
=
.
2) Tính tích phân:
x
x
x e
I dx
x e
1
0
( 1)
1 .
+
=
+
ò
.
3) Tính th tích hình tròn xoay do hình phng gii hn bi các đng
2
2
y x + x
= - và
y = 0 quay quanh trc Ox.
Câu 3 (1,0 đim). Cho lng tr tam giác ABC.A

B


C

có đáy ABC là tam giác đu cnh a,
AA

= 2a, đng thng AA

to vi mt phng (ABC) mt góc
0
60
. Tính th tích ca
khi lng tr.
II. PHN RIÊNG (3,0 đim).
A. Theo chng trình chun
Câu 4a (2,0 đim). Trong không gian vi h ta đ Oxyz, cho ba đim A(5;0;4), B(5;1;3),
C(1;6;2).
1) Vit phng trình tham s ca đng thng AB và phng trình mt phng (P) qua
trng tâm G ca tam giác ABC và có vet pháp tuyn
n
(1; 2; 3)
= - -
r
.
2) Tính đ dài đng cao CH ca tam giác ABC (H thuc cnh AB).
Câu 5a (1,0 đim). Gii phng trình: x x
2
4 5 0
- + =
trên tp s phc.
Tran Sú Tuứng www.MATHVN.com

www.MATHVN.com 25
B. Theo chng trỡnh nõng cao
Cõu 4b (2,0 im). Trong khụng gian vi h ta Oxyz, cho mp
x y z
( ) :2 3 3 0
a
+ + - =
v
ng thng (d):
x y z
3 1
2 1 3
- -
= =
-
.
1) Vit phng trỡnh mt phng (b) vuụng gúc vi ng thng (d) ti giao im A ca
ng thng (d) vi mt phng (a) .
2) Vit phng trỡnh chớnh tc ca ng thng (D) nm trong mt phng (a), ct (d) v
vuụng gúc vi (d) .
Cõu 5b (1,0 im). Gii phng trỡnh: x i x i
2
(2 3) 2 3 0
- - - =
trờn tp s phc.

ỏp s:
Cõu 1: 2)
m < 5 v m > 3 m = 5 v m = 3 5 < m < 3
s nghim 1 2 3

Cõu 2: 1) x = 1 2) 1
I e
ln( )
= +
3) V
16
15
p
=
Cõu 3:
V a
3
3
4
=
Cõu 4a: 1)
x
AB y t
z t
5
( ) :
4

=
ù
=

ù
= -


;
2 3 10 0
P x y z
( ) :
+ =
2) CH
2 6
= Cõu 5a:
x i
x i
2
2

= -

= +


Cõu 4b: 1)
x y z
( ):2 3 5 0
b
- + + =
2) (D):
x y z
1 1 2
5 2 4
- - +
= =
-

Cõu 5b: x i x
3; 2
= - =

www.MATHVN.com - s 25

I. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu 1: (3 im)
1) Kho sỏt s bin thiờn v v th (C) ca hm s
3 2
3 4
y x x
= +
.
2) Tỡm iu kin ca tham s m th (C
m
):
3 2
3
y x x m

= ct trc honh Ox ti
ba im phõn bit.
Cõu 2: (3 im)
1) Gii phng trỡnh : log
2
(9
x
+ 3
x + 1

2) = 1.
2) Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s
x x
y
2
2 1
2
- -
= trong on [0; 2].
3) Tớnh tớch phõn: I =
e
x x dx
1
.ln .
ũ

Cõu 3: (1 im) Trong khụng gian cho khi chúp t giỏc u cú tt c cỏc cnh bng nhau.
Gi V
1
, V
2
tng ng l th tớch khi chúp v th tớch khi cu ngoi tip khi chúp.
Tớnh t s
V
V
1
2
.
B. PHN RIấNG:
A. Theo chng trỡnh chun:

Cõu 4a: (2 im) Trong khụng gian vi h to Oxyz, cho 3 im A(1;2;1), B(2;1;3),
C(4;3;1).
1) Chng minh rng tam giỏc ABC l tam giỏc vuụng.
2) Lp phng trỡnh tng quỏt ca mt phng (ABC).
Cõu 5a: (1 im) Gii phng trỡnh sau trờn tp s phc:
3 2 12 5
i z i
( ).
= +
(z l n s)
B. Chng trỡnh nõng cao:
Cõu 4b: (2 im) Trong khụng gian vi h to Oxyz, cho im I(2; 1; 1) v mt phng (P)
cú phng trỡnh x 2y + 2z +1 = 0

×