CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
1
CHUYÊN ĐỀ PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH
BÀI TẬP GIẢI PHƯƠNG TRÌNH BẬC CAO (PHẦN 1)
Bài 1. Giải các phương trình sau trên tập hợp số thực
3 2
3 2
3 2
3 2
3 2
3 2
3 2
3 2
3 2
3 2
3 2
3 2
3
1, 4 2 1 0
2, 7 7 1 0
3, 9 7 1 0
4, 6 3 4 0
5, 5 8 12 0
6, 6 3 10 0
7, 7 14 8 0
8, 8 20 28 10 0
9, 3 4 4 0
10, 5 7 0
11, 13 42 36 0
12, 10 31 30 0
13,
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x
− + + =
+ − − =
− + + =
+ − − =
− − + =
+ + − =
− + − =
− + − =
+ + + =
− + + =
− + − =
− + − =
2
3 2
4 3 2
4 3 2
4 3 2
4 2
4 2
4 3 2
4 3 2
4 3 2
4 3 2
7 2 0
14, 2 11 2 15 0
16, 5 3 6 0
17, 11 6 8 0
18, 10 25 36 0
19, 9 24 16 0
20, 16 40 25 0
21, 2 2 1 0
22, 3 13 10 0
23, 4 1 0
24, 2 11
x x
x x x
x x x x
x x x x
x x x
x x x
x x x
x x x x
x x x x
x x x x
x x x x
+ − + =
− + + =
+ − − + =
+ − + + =
− + − =
− − − =
− − − =
− − − + =
+ − − − =
+ − + + =
+ − + +
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
2 0
25, 7 14 7 1 0
26, 10 1 0
27, 2 3 10 3 2 0
28, 3 4 8 4 3 0
29, 2 2 7 2 9 0
30, 10 26 10 1 0
31, 3 17 31 23 6 0
32, 2 27 118 183 90 0
33, 6 53 114 3
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x
=
− + − + =
+ − + + =
− + − + =
− − − + =
+ + − − =
− + − + =
− + − + =
− + − + =
− + +
3 2
3 140 0
34, 17 7 9 0
x
x x x
− =
− + + =
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
2
Bài 2.
Giải các phương trình sau trên tập hợp số thực
4 3 2
4 3 2
4 3 2
4 3
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4
1, 9 6 25 8 16 0
2, 9 6 16 8 16 0
3, 9 6 9 8 16 0
4, 9 6 8 16 0
5, 9 6 24 8 16 0
6, 9 6 21 8 16 0
7, 9 9 26 12 16 0
8, 9 12 27 16 16 0
9, 4 3 9 3 4 0
10, 7
x x x x
x x x x
x x x x
x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x
− + − + =
− + − + =
− + − + =
− − + =
− − − + =
− + − + =
− + − + =
− + − + =
− − − + =
−
3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 2 2
4 2 2
4 3 2
4 3 2
8 7 1 0
11, 5 12 5 1 0
12, 6 5 38 5 6 0
13, 4 6 4 1 0
14, 7 16 7 1 0
15, 2 2 2 1 0
16, 6 10 6 1 0
17, 7 12 7 1 0
18, 8 14 8 1 0
19, 9 16 9 1
x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
+ − + =
+ − + + =
+ − + + =
− + − + =
+ − + + =
− + − + =
− + − + =
− + − + =
− + − + =
− + − + =
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
4 3 2
0
20, 7 10 14 4 0
21, 5 8 10 4 0
22, 7 14 14 4 0
23, 5 10 10 4 0
24, 6 12 16 4 0
25, 9 18 18 4 0
26, 4 10 16 15 9 0
27, 4 12 30 18 9 0
28, 4 16 20 24
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
− + − + =
− + − + =
− + − + =
− + − + =
− + − + =
− + − + =
− + − + =
− + − + =
− + −
4 2 2
4 2 2
4 2 2
4 2 2
4 2 2
4 3 2
4 3 2
4 3 2
9 0
29, 4 16 19 24 9 0
30, 4 16 27 24 9 0
31, 4 16 28 24 9 0
32, 4 16 8 24 9 0
33, 4 16 3 24 9 0
34, 9 15 28 20 16 0
35, 9 12 12 16 16 0
36, 9 24 31 32 16 0
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
+ =
− + − + =
− + − + =
− + − + =
− − − + =
− + − + =
− + − + =
− + − + =
− + − + =
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
3
Bài 3. Giải các phương trình sau trên tập hợp số thực
(
)
(
)
(
)
(
)
( )( )( )( )
( )( )( )
( )( )
( )( )( )( )
( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )
( )( )
( )
( )( )
2 2
2 2
2
2 2 2
1, 1 2 3 4 120
2, 1 2 3 6 160
3, 1 2 3 9
4, 3 2 3
5, 5 6 8 9 40
6, 2 3 8 12 36
7, 2 3 7 8 144
8, 1 3 5 7 15 0
9, 4 5 6 7 1680
10, 2 2 10 72
11, 2 4 2 3 2
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x
x x x x x x
+ + + + =
− + + + =
+ + + =
− + + =
+ + + + =
+ − + + = −
+ + − − =
+ + + + + =
− − − − =
+ − − =
+ + + + = + +
( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )
( )
( )( )
( )
2 2
2
2 2
7
12, 3 4 6 24
13, 5 6 7 8 3024
14, 5 6 7 8 416
15, 5 7 10 8 2800
16, 2 5 3 7 3 1 2 9 315
17, 2 3 4 4 2 1 3 36 0
18, 3 1 1 5 1 15 7 7 0
19, 2 1 2 3 2 4 9 0
20, 1 3 5 9
21, 3 2 9
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x
x x x x
+ − + − =
+ + + + =
+ − − + =
+ + + + =
+ + + + =
+ − + + + =
+ + + − + =
− + + + + =
− + + =
− + +
( )
( )( )
( )( )( )( )
( )( )( )( )
( )( )
( )( )
( )( )( )( )
( )( )( )( )
( )( )( )( )
( )( )
2 2
2
2
2 2 2
2 2 2
2
2
2
2 2 2
20 112
22, 6 5 10 21 9
23, 8 4 2 1 4
24, 4 5 6 10 12 3
25, 2 4 3 4 14
26, 2 3 1 2 5 1 9
27, 1 2 3 6 168
28, 1 4 2 8 154
29, 4 3 2 6 160
30, 2 8 3 18 70
x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
+ =
+ + + + =
− − − − =
+ + + + =
− + + + =
− + + + =
+ + + + =
− + − + =
+ − − + =
+ − + − =
( )( )
( )( )
2 2 2
2 2 2
31, 3 1 4 1 30
32, 6 2 8 2 99
x x x x x
x x x x x
+ + + + =
+ + + + =
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
4
Bài 4. Giải các phương trình sau trên tập hợp số thực
(
)
(
)
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( )
( ) ( )
( ) ( )
( ) ( ) ( ) ( )
3 3
3 3
3 3
3
4 4
4 4
4 4
6 6
6 6
3 3 3
4
4
3 3
3 3
3
2 2
1, 2 4 8
2, 4 6 28
3, 5 7 133
4, 4 6 16
5, 2 4 2
6, 2 8 272
7, 2 4 64
8, 1 3 2
9, 1 2 2 1
10, 1 97
11, 3 1 56
12, 1 2 1
13, 1 2 1 2 12
14,
x x
x x
x x x
x x
x x
x x
x x
x x
x x x
x x
x x
x x x
x x x x
x
− + − =
− + − =
− − − + =
− + − =
− + − =
+ + + =
− + − =
− + − =
− + + = +
− + =
+ − − =
+ − = −
+ + + − − =
( )( )
( ) ( )
( )
( )
( ) ( )
( ) ( )
( )( )
( )( )
( )
( )
( ) ( )
( )
( )
( )( )
( ) ( ) ( )
2 2
2 2
2
2
2
2
2
2
4
2
2
2
2
2
2 2
2 2
1 4 3 192
15, 3 6 4 3 36
16, 1 1 12
17, 4 2 1 1 72
18, 1 2 1
19, 4 2 3 0
20, 1 2 1 18 0
21, 3 15 6 10 1
22, 2 8 1 4 1 9
23, 2 4 2 4
24, 6 4 1
25, 7 8 15 2
x x
x x x
x x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x x
x x x
− + + =
− + − =
+ + + =
− − =
− + − =
− − + =
− − + =
− − − + =
− − =
− + − =
+ − + − = −
− + − = −
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )( )
( )
( )
( )( )
4
5 5
4 4
6 6
2 2
2
2
2
2
26, 1 1 242 1
27, 2,5 1,5 1
28, 1 2 1
29, 10 5 5 125
30, 1 3 2 2
31, 2 2 1 1 11
x x x
x x
x x
x x x
x x x x
x x x x
− + + = +
− + − =
− + − =
− + − =
+ − − = −
− + + − =
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
5
Bài 5. Giải các phương trình sau trên tập hợp số thực
2
2
3
3
3
3
3
3
2
2
2
2
4 2
2 4
2 2
2
2
4
4
5 3
1, 4 0
5
1 1
2, 6
1 1
3, 4 13
1 1
4, 78
1 5
5,
1 2
1 1
6, 3 4
2 1
7, 2
2 1
6 6
8, 722
6
1 1
9, 10 6
1
10, 1
x x x
x x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x
x
+ −
+ + =
+ −
+ = +
+ = +
+ = +
+
+ =
+
+ = + −
+
+ =
+
+
+ =
+
+ + = +
+ +
2
2
3 2
3 2
3 2
3 2
2
2
2
2
2 2
2
2
1
2 7
1 1 1
11, 6
1 1 1
12, 3 5 16
1 1
13, 1 2
1 1
14, 3 1 3
1 1 40
15, 1
2 9
1 1 5
16, 4 4
x
x
x x x
x x x
x x x
x x x
x x
x x
x x
x x
x
x x
x x
x x
= +
+ + + + + =
+ + + + + =
+ + − =
+ − + + = −
−
− + =
−
− − + − +
2
2
2
2
2
2
2
2
0
8
1 1
17, 2 5 4 1 36
3 9
18, 1 3 39 0
1 1
19, 1 1 1 0
1 3
20, 1 3 1 5
x x
x x
x x
x x
x x
x x
x x
x x
=
− + + + =
− − + + + =
− − + − + =
− + + − =
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
6
Bài 6.
Giải các phương trình sau trên tập hợp số thực
( )
( ) ( )
( ) ( )
2 2
2
2
2 2
2
2
2
2
2
2
2 2
2
2
2 2
2
2
2 4 2
1, 20 48 5
1 1 1
2 2 5 4
2, 20
1 1 2 1
2 5 2
3, 0
1
1
4 7 1
4, 0
3 2
1 2
3 28 48
5, 0
12
3 4
1 1
6, 4 7. 3
1 2
x x x
x x x
x x x
x x x
x
x x
x
x x
x x
x x
x x
x x
x x
x x
x x
− − +
+ =
+ − −
+ − −
+ =
+ − −
− + =
−
−
− + =
− +
− −
− + =
+ −
− +
− −
− +
+ +
( )
( )
( ) ( )
( ) ( )
2
2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
0
2
1 1 1
7, 3 8 5 0
3 9 3
4
8, 2
1 1
5 2
4 2
9, 0
1 1
1
3 2 3
1
10,
3
4 3 9 3 5
3 9 8 28
11, 7 2
5 25 5
12
x
x
x x x
x x x
x x
x x
x x
x x
x x
x
x x x x
x x x
x x x
x x x
+
=
+
+ − −
− + =
+ − −
−
+ =
− −
−
−
− + =
− −
−
− − − +
=
− − − +
+ − −
− + =
+ − −
( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( )
( )
( ) ( )
3 2
3
3
2 2
2 2
3 2
2 3
2
2
2
2
2
2
2
3
, 2
1
1
19 4 19 5 6 5
3
13,
2
19 5 19 5 4 5
2 2 5 2
14, 9 3
1 1 1
3 2 7
15,
3 3
3
1 19
16,
1 12
2 2
17, 4 4
2 1 1
2011 4 2011 2
18,
x x
x
x
x
x x x x
x x x x
x x x
x x x
x x x x
x
x
x x x
x x
x x
x
x x
x x x
x x x
+ + =
−
−
− − − + + +
=
− + − + + +
− − −
+ =
− − −
+ + −
− =
+
+
+
+ =
−
−
− + − =
− + −
− − − −
( ) ( )
( ) ( )( ) ( )
2
2 2
012 2013 2012
2013
2011
2012 5 2011 2012 2011 2012
x
x x x x
+ −
=
− + − − + −
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
7
Bài 7.
Giải các phương trình sau trên tập hợp số thực
(
)
( )
2
2
2 2 2
2 2
2 2
2
2 2
2 2
2 2
2
9 1
7 1
1,
1 1
1 2 6
2,
3 3 3 4 3 5
1 1 21 1 1
3,
6 7 21 9 10
2 7
4, 1
3 2 3 5 2
3 7 4
5, 0
3 1 1
10 15 4
6,
6 15 12 15
3 5 1 5 5
7,
4 5 4 6 5
13
8,
2
x x
x
x x x
x x x x x x
x x x x
x x
x x x x
x x x x x
x x x
x x x x
x x x x
x x x x
x x
+ +
+
=
− + −
+ =
− + − + − +
+ = + +
+ + + +
= +
− + + +
+ + =
− + + +
− +
=
− + − +
− + − +
+ =
− + − +
+ +
( )
2
2 2
2 2
2 2 2 2
2 2
2 2
2
2 6
3 2 5 3
4 5
9, 1 0
8 7 10 7
3 2 8
10,
4 1 1 3
8
8
11, 15
1 1
1 6 2 5
12,
2 12 35 4 3 10 24
24 15
13, 2
2 8 2 3
2 13
14, 6
2 5 3 2 3
6 8
15,
1
x x x
x x
x x x x
x x x x x
x x
x
x
x x
x x x x
x x x x x x x x
x x x x
x x
x x x x
x x
+ =
− +
+ + =
− + − +
− =
− + + +
−
−
− =
− −
+ + + +
+ = +
+ + + + + + +
− =
+ − + −
+ =
− + + +
+
+ +
( )( )
2
2 2
2
2 2
2 2
2 2
2
2 2
2 2
2 2
2
2 2
10
1
20 21
16, 13
3 4 3 4
3 5
17, 12
5 3 5
6 6
18, 5 0
5 6 8 6
3 1 25
19,
1 9 1 14
5 2 9 2 14
20,
2 3 2 3
1 3
2 3 2
21, 0
3 3 5 3 63
x x x
x x
x x x x
x x
x x x x
x x x x
x x x x
x x
x x x
x x x x
x x x
x x
x x
x x x x
=
− +
= −
+ + − +
+
= +
+ + + +
− + + +
+ + =
− + − +
+
= +
+ − +
+ + + +
+ =
+ + +
+ +
+ +
− + =
+ + + +
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
8
Bài 8.
Giải các phương trình sau trên tập hợp số thực
(
)
(
)
( )( )
( )
( )
( )
( )
( )
3 2
2 2 2
3 3
3
2 2
4
4
4 3 2
4 3 2
3 2
4 3 2
4 3
4 2
4 2
1, 1 2 3 2 2 3 4 3
2, 3 2 7 12 5 6
3, 1 1 3 3 2
4, 2 1 27 12 12
5, 3 14 6 4 0
6, 4 3 12 16
7, 4 2 22 17 2 6
8, 2 2 1 0
9, 2 132
10, 3 10 4
11, 2
x x x
x x x x x x
x x x x
x x
x x x x
x x x x
x x x
x x x x
x x x
x x x
x x
+ − + − =
+ + + + + + =
+ + − = − +
+ + + = +
− − − + =
+ + = +
− + =
+ + + + =
− + =
− − =
= +
( )
( )
4 2
4 3
8 4
4 2
3
3
3 2
3
3 2
4 2
4
4 3 2
3 2
3 2
7 6
8 3
12, 2 12 8
13, 3 3 1 0
14, 20 0
15, 12 16 2 12
16, 8 1 162 27
17, 7 3 3 1
18, 2 5 3
19, 1 0
20, 4 3
21, 4 1
22, 3 1 0
23, 9 18 0
24, 2 2 1
25, 2
x
x x x
x x x
x x
x x x
x x
x x x
x x
x x
x x x
x x
x x x x
x x x
x x
x x
+
= − +
− + + =
− − =
− + =
+ = −
= + +
+ =
− + =
+ + =
= +
+ + + + =
+ − − =
+ = +
−
( )
( )
( )
( )
( )
( )
5 4 3 2
8 5 2
2
2
3
3
2
2
2 3
2
2
2
4 2
3 2
3 3 2 1 0
26, 1 0
27, 3 2 3 2
28, 162 27 3 8 3
29, 3 1 2 1 5 1
1 1
30, 1 3
2 4
32, 2 3 3 3
33, 26 3 3 1
x x x x x
x x x x
x x
x x
x x x x
x x x
x x x
x x x
+ − − + − + =
− + − + =
+ − =
+ = −
− + − + = +
+ + = + +
− + + =
= − −
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
9
Bài 9.
Giải các phương trình sau trên tập hợp số thực
( )
( )
( )
( )
( )
( )
( )
( )
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 2
2 2
3
3
2
2 2
2
2 2
4
1, 12
2
81
2, 40
9
3, 15
1
9
4, 7
3
5, 3
1
6, 3 4 3 8 16
7, 90
1 1
8 2001
8, 4004 2001
2002
9, 2 2 2 5 4 3 5 0
10, 8 15 9 2 2 4 3
11
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x x x x
x x
x x
x
x
x x x x
x x x x
+ =
+
+ =
+
+ =
+
+ =
+
+ =
−
+ − + + =
+ =
+ −
+
= −
− − − + + =
− + = − +
( ) ( )
( ) ( )
( ) (
)
( ) ( )
3 2
2
2
2 2
2
2 2 2
4 2
4 3 2
4 3 2
2 4
4 2
4 2
4 3 2
4
, 3 2 1 2 1 0
12, 1 1 3 2 6 3 2
13, 1 6 1 5 0
14, 6 12 8
15, 6 22 10 1
16, 2 24 4 35
17, 21 10 3
18, 4 5 4 3
19, 9 8 1 12
20, 35 6 13 6 3 0
21, 2
x x x x
x x x x
x x x x x x
x x x
x x x x
x x x x
x x x
x x x
x x x
x x x x
x x
− − + − =
+ + + − = −
+ + − + + + =
− + =
− − + =
− + = +
= + +
− + =
− = +
+ + + + =
−
3 2
4 3 2
4 3 2
4 2
4 3 2
4 3 2
4 2
3 2
8 1 15
22, 4 5 6 1
23, 4 4 3 1 4
24, 1 10 8
25, 10 9 24 9
26, 8 7 12 4
27, 3 4 3
28, 2 3 3 1 0
x x
x x x x
x x x x
x x x
x x x x
x x x x
x x x
x x x
+ = +
= + + +
− − = −
+ = −
− + + =
− + = +
− = +
+ + + =
CREATED BY HOÀNG MINH THI; TRUNG ĐOÀN 1 – SƯ ĐOÀN 5 – QUÂN ĐOÀN BỘ BINH
10
Bài 10.
Giải các phương trình sau trên tập hợp số thực
(
)
(
)
( ) ( )
( ) ( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( )
( ) ( )
2
2 2 2
2
2 2 2
2
2 2 2
4 2 2
2
2
2 3
5 4 2
2
2
2 3
2
4 4
2
2
2 2 2
2
2 4 2
1, 2 2 5 2 2
2, 2 3 2 2 0
3, 1 3 4 1
4, 3 1 4 1
5, 2 1 7 1 13 1
6, 2 2 1 3 1
7, 3 1 2 1 5 1
8, 3 6 2 2
9, 1 3 1 2 0
10, 1 3 1
1
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x x
x x x x
x x x x
x x x x
x x x x
+ − + = −
+ − + + =
+ + = +
+ + = +
+ + = − + −
+ + + = +
− + = + + +
+ = + − + −
+ + + + =
+ + = + +
( ) ( )
( )
( )
( )
( )
( )
( )
( )
( ) ( )
( )( )
( )
2
2 2 2
4 2 2
4 2 2
2 4 2
2
4 4
2
2
2
2
2
2 2
2
4 3 2 2
1, 10 2 5 9 2 5 0
12, 3 1 6 1
13, 12 9 7 3
14, 2 4 4 3 2
15, 2 3 5 2 7 3 2 2 1 0
2 2 5
16,
2 2
1
1 6 7
17,
2 1
2 1
18, 6 14 6 1 4 3 1
19
x x x x x x
x x x x
x x x x
x x x x x
x x x x
x x x
x x
x
x x
x x
x x
x x x x x x x
− + + + + + =
+ + = +
+ + = +
+ + = + −
− − − + + − =
−
+ =
− −
−
+ =
− −
− −
+ + + + = + +
( )
( )
( )
( )
( )
( )( )
( )
( ) ( )(
)
( ) ( )
( )
( )
( ) ( )
( )
( ) (
)
( )
( )
2
2
2 3
2
2 2
2
2 2
2
2 2 2
2
2
4 2
4
2 3
4 2
4
2 3
4
4 2 2
, 1 4 1 5 5
20, 2 1 5 6 4
21, 3 1 3 7 13 10 2 0
22, 6 5 4 4 3 7 12 22
23, 18 2 1 9 4 4 27 9
24, 2 14 2 1 9 5 2
25, 3 15 2 6 1 8 2 19 3
26, 7 2 1 8 1
x x x x
x x x x
x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
+ + + − + =
− = − − −
− − + + − =
− + = − + −
− = − − +
− + + − = − +
− + + − = − +
+ + + = +
( ) ( )
2
2 2 2
27, 3 10 1 7 1x x x x x x− − + = − + −