Đề thi đại số môn toán lớp 10
ĐỀ SỐ 10
Câu 1 ( 2 điểm )
Cho phương trình : x
2
+ 2x – 4 = 0 . gọi x
1
, x
2
, là nghiệm của phương trình .
Tính giá trị của biểu thức :
2
2
1
2
21
21
2
2
2
1
322
xxxx
xxxx
A
Câu 2 ( 3 điểm)
Cho hệ phương trình
12
7
2
yx
yxa
a) Giải hệ phương trình khi a = 1
b) Gọi nghiệm của hệ phương trình là ( x , y) . Tìm các giá trị của a để x + y
= 2 .
Câu 3 ( 2 điểm )
Cho phương trình x
2
– ( 2m + 1 )x + m
2
+ m – 1 =0.
a) Chứng minh rằng phương trình luôn có nghiệm với mọi m .
b) Gọi x
1
, x
2
, là hai nghiệm của phương trình . Tìm m sao cho : ( 2x
1
– x
2
)(
2x
2
– x
1
) đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất ấy .
c) Hãy tìm một hệ thức liên hệ giữa x
1
và x
2
mà không phụ thuộc vào m .
Câu 4 ( 3 điểm )
Cho hình thoi ABCD có góc A = 60
0
. M là một điểm trên cạnh BC , đường
thẳng AM cắt cạnh DC kéo dài tại N .
a) Chứng minh : AD
2
= BM.DN .
b) Đường thẳng DM cắt BN tại E . Chứng minh tứ giác BECD nội tiếp .
c) Khi hình thoi ABCD cố định . Chứng minh điểm E nằm trên một cung
tròn cố định khi m chạy trên BC .
ĐỀ SỐ 11
Câu 1 ( 3 điểm )
Cho biểu thức :
2
2
2
1
2
1
.)
1
1
1
1
( x
x
xx
A
1) Tìm điều kiện của x để biểu thức A có nghĩa .
2) Rút gọn biểu thức A .
3) Giải phương trình theo x khi A = -2 .
Câu 2 ( 1 điểm )
Giải phương trình :
12315 xxx
Câu 3 ( 3 điểm )
Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đường thẳng (D) : y = - 2(x
+1) .
a) Điểm A có thuộc (D) hay không ?
b) Tìm a trong hàm số y = ax
2
có đồ thị (P) đi qua A .
c) Viết phương trình đường thẳng đi qua A và vuông góc với (D) .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD cố định , có độ dài cạnh là a .E là điểm đi chuyển
trên đoạn CD ( E khác D ) , đường thẳng AE cắt đường thẳng BC tại F , đường
thẳng vuông góc với AE tại A cắt đường thẳng CD tại K .
1) Chứng minh tam giác ABF = tam giác ADK từ đó suy ra tam giác AFK
vuông cân .
2) Gọi I là trung điểm của FK , Chứng minh I là tâm đường tròn đi qua A ,
C, F , K .
Tính số đo góc AIF , suy ra 4 điểm A , B , F , I cùng nằm trên một đường tròn .