Đề kiểm tra 1 tiết chương I : ĐẠI SỐ 10(nâng cao)
Đề 1
Bài 1(2 điểm): Sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ” để phát biểu định lí sau:
“Nếu một tứ giác là hình vuông thì nó có bốn cạnh bằng nhau”.
Có định lí đảo của định lí trên không , vì sao?
Bài 2(1 điểm): Chứng minh bằng phương pháp phản chứng: Nếu phương trình bậc hai
ax
2
+bx+c=0 vô nghiệm thì a và c cùng dấu.
Bài 3(2 điểm): Viết mệnh đề phủ định của các mệnh đề sau và xét tính đúng , sai của các
mệnh đề đó:
a/
2
, 0x x¡" Î >R
b/
2
,n N n n¥$ Î =
c/
, 2n N n n¥" Î £
d/
1
,x x
x
¡R$ Î <
Bài 4(3 điểm): Xác định các tập hợp
, \ ,A B A C A B CÈ Ç Ç
và biểu diễn trên trục số các
tập hợp tìm được biết:
{ }
1 3A x x¡R= Î - £ £
,
{ }
1B x x¡R= Î ³
,
(
)
;1C = - ¥
Bài 5(1 điểm): Cho hai tập hợp A,B. Chứng minh: Nếu
A BÌ
thì
A B AÇ =
Bài 6(1 điểm): Người ta đo chu vi của một khu vườn là P = 213,7m
±
1,2m. Hãy đánh giá
sai số tương đối của phép đo trên và viết kết quả tìm được dưới dạng khoa học.
Đề kiểm tra 1 tiết chương I : ĐẠI SỐ 10(nâng cao)
Đề 2
Bài 1(2 điểm): Sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ” để phát biểu định lí sau:
“Nếu một tứ giác là hình thoi thì nó có hai đường chéo vuông góc”.
Có định lí đảo của định lí trên không , vì sao?
Bài 2(1 điểm): Chứng minh bằng phương pháp phản chứng: Nếu hai số nguyên dương có
tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.
Bài 3(2 điểm): Viết mệnh đề phủ định của các mệnh đề sau và xét tính đúng , sai của các
mệnh đề đó: a/
( )
2
, 1 1x x x¡" Î - ¹ -R
b/
2
,( 1)n N n¥ MMM$ Î +
chia hết cho 4
c/
2
,n N n n¥" Î >
d/
1
,x x
x
¡R$ Î <
Bài 4(3 điểm): Xác định các tập hợp
, \ ,A B A C A B CÈ Ç Ç
và biểu diễn trên trục số các
tập hợp tìm được biết:
{ }
2 2A x x¡R= Î - £ £
,
{ }
3B x x¡R= Î ³
,
(
)
;0C = -¥
Bài 5(1 điểm): Cho hai tập hợp A,B,C. Chứng minh: Nếu
B CÌ
thì
A B A CÇ Ì Ç
Bài 6(1 điểm): Khi xây một hồ cá hình tròn người ta đo được đường kính của hồ là 8,52m
với độ chính xác đến 1cm Hãy đánh giá sai số tương đối của phép đo trên và viết kết
quả tìm được dưới dạng khoa học .
ỏp ỏn 1
B i Đáp án Đ
1 Một tứ giác là hình vuông là điều kiện đủ để nó có 4 cạnh bằng nhau.
Một tứ giác có 4 cạnh bằng nhau là điều kiện cần để nó là hình vuông.
1
Không có định lí đảo vì tứ giác có 4 cạnh bằng nhau có thể là hình thoi 1
2 Giả sử phơng trình vô nghiệm và a,c trái dấu
Với điều kiện a,c trái dấu có a.c<0 suy ra
2 2
4 4( ) 0b ac b ac
= = + >
Nên phơng trình có hai nghiệm phân biệt, điều này mâu thuẫn với giả thiết
phơng trình vô nghiệm.
Vậy phơng trình vô nghiệm thì a,c phải cùng dấu.
1
3
a)
2
, 0x xĂ$ ẻ ÊR
là mệnh đề đúng.
b/
2
,n N n nƠ" ẻ ạ
là mệnh đề sai.
c/
, 2n N n nƠ$ ẻ >
là mệnh đề sai.
d/
1
,x x
x
ĂR" ẻ
là mệnh đề sai.
2
4
Có
[ ]
1;3
=
và
[
)
1;
= +
a)
[
)
1;A B
= +
b)
[ ]
\ 1;3A C =
c)
C
=
3
5
+)
x x
nên
(1)
+)
,x x
nên
x
(2)
Từ (1) và (2) có
=
1
6
213,7
213,7 1,2
1,2
a
m m
d
=
=
=
nên
3
1,2
5,62.10
213,7
d
a
= =
1
ỏp ỏn 2
B i Đáp án Đ
1 Một tứ giác là hình thoi là điều kiện đủ để nó có hai đờng chéo vuông góc.
Một tứ giác có hai đờng chéo vuông góc là điều kiện cần để nó là hình thoi.
1
Không có định lí đảo vì tứ giác có hai đờng chéo vuông góc có thể là hình
vuông hoăc một đa giác bất kì có hai đờng chéo vuông góc.
1
2 Giả sử trong hai số nguyên dơng a và b có ít nhất một số không chia hết
cho 3 , chẳng hạn a không chia hết cho 3 .
Thế thì a có dạng: a = 3k+1 hoặc a = 3k+2. Lúc đó a
2
=3m+1 , nen nếu b chia
hết cho 3 hoặc b không chia hết cho 3 thì a
2
+ b
2
cũng có dạng: 3n+1 hoặc
3n+2, tức là a
2
+ b
2
không chia hết cho 3, trái giả thiết.
Vậy nếu a
2
+ b
2
chia hết cho 3 thì cả a và b đều a
2
+ b
2
chia hết cho 3.
1
3
a)
2
,( 1) 1x x xĂ$ ẻ - = -R
là mệnh đề đúng.
b/
2
,( 1)n N nƠ" ẻ +
không chia hết cho 4 là mệnh đề đúng.
c/
2
,n N n nƠ$ ẻ Ê
là mệnh đề đúng.
d/
1
,x x
x
ĂR" ẻ
là mệnh đề sai.
2
4
Có
[ ]
2;2
=
và
[
)
3;
= +
a)
[ ] [
)
2;2 3;A B
= +
b)
[ ]
\ 0;2A C =
c)
C
=
3
5
x x
x x C
x x C
nên
C
1
6
852
8,52 0,01
1
a cm
R m m
d cm
=
=
=
nên
3
1
1,174.10
852
d
a
= =
1