Đề thi giữa kì 2 môn toán 11 2000
Đề số 24
Câu 1 ( 2 điểm )
Tính giá trị của biểu thức :
322
32
322
32
P
Câu 2 ( 3 điểm )
1) Giải và biện luận phơng trình :
(m
2
+ m +1)x
2
– 3m = ( m +2)x +3
2) Cho phơng trình x
2
– x – 1 = 0 có hai nghiệm là x
1
, x
2
. Hãy lập phơng
trình bậc hai có hai nghiệm là :
2
2
2
1
1
;
1 x
x
x
x
Câu 3 ( 2 điểm )
Tìm các giá trị nguyên của x để biểu thức :
2
32
x
x
P là nguyên .
Câu 4 ( 3 điểm )
Cho đờng tròn tâm O và cát tuyến CAB ( C ở ngoài đờng tròn ) . Từ điểm
chính giữa của cung lớn AB kẻ đờng kính MN cắt AB tại I , CM cắt đờng tròn tại
E , EN cắt đờng thẳng AB tại F .
1) Chứng minh tứ giác MEFI là tứ giác nội tiếp .
2) Chứng minh góc CAE bằng góc MEB .
3) Chứng minh : CE . CM = CF . CI = CA . CB
Đề số 25
Câu 1 ( 2 điểm )
Giải hệ phơng trình :
044
325
2
22
xyy
yxyx
Câu 2 ( 2 điểm )
Cho hàm số :
4
2
x
y
và y = - x – 1
a) Vẽ đồ thị hai hàm số trên cùng một hệ trục toạ độ .
b) Viết phơng trình các đờng thẳng song song với đờng thẳng y = - x – 1 và
cắt đồ thị hàm số
4
2
x
y
tại điểm có tung độ là 4 .
Câu 2 ( 2 điểm )
Cho phơng trình : x
2
– 4x + q = 0
a) Với giá trị nào của q thì phơng trình có nghiệm .
b) Tìm q để tổng bình phơng các nghiệm của phơng trình là 16 .
Câu 3 ( 2 điểm )
1) Tìm số nguyên nhỏ nhất x thoả mãn phơng trình :
413 xx
2) Giải phơng trình :
0113
22
xx
Câu 4 ( 2 điểm )
Cho tam giác vuông ABC ( góc A = 1 v ) có AC < AB , AH là đờng cao kẻ
từ đỉnh A . Các tiếp tuyến tại A và B với đờng tròn tâm O ngoại tiếp tam giác ABC
cắt nhau tại M . Đoạn MO cắt cạnh AB ở E , MC cắt đờng cao AH tại F . Kéo dài
CA cho cắt đờng thẳng BM ở D . Đờng thẳng BF cắt đờng thẳng AM ở N .
a) Chứng minh OM//CD và M là trung điểm của đoạn thẳng BD .
b) Chứng minh EF // BC .
c) Chứng minh HA là tia phân giác của góc MHN .