Tải bản đầy đủ (.docx) (12 trang)

Giải thuật di truyền và áp dụng cho bài toán chiếc ba lô loại 2

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (273.34 KB, 12 trang )

Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
Giải thuật gene

Bài toán chiếc ba lô loại 2
1
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
I. Giới thiệu chung.
Xuất phát từ khái niệm lý thuyết Darwin của sự tồn tại thích hợp
nhất và được John Holland đưa ra lần đầu tiên vào năm 1975.
Thuật toán gene (GAs – Genetic Algorithms) là thuật toán tìm
kiếm, chọn lựa giải pháp tối ưu để giải quyết các bài toán khác
nhau dựa trên mô phỏng cơ chế tiến hoá của tự nhiên.
Trong cơ thể sinh vật, các gene liên kết với nhau theo cấu trúc
dạng chuỗi gọi là nhiễm sắc thể (Chromosomes), nó đặc trưng co
mỗi loài và quyết định sự sống còn của cơ thể đó. Trong tự nhiên
một loài muốn tồn tại phải thích nghi với môi trường, cơ thể
sống nào thích nghi với môi trường tốt thì tồn tại và phát triển,
ngược lại với những loài không thích nghi với môi trường sống
sẽ bị đào loại bỏ và dần dần tuyệt chủng. Môi trường tự nhiên
thay đổi nên cấu trúc nhiễm sắc thể cũng thay đổi để thích nghi
với môi trường nên thế hệ sau luôn có độ thích nghi cao hơn thế
hệ trước. Dựa vào đó các nhà khoa học máy tính xây dựng nên
môi trường giải thuật tìm kiếm dựa trên cơ sở chọn lọc tự nhiên
và quy luật tiến hoá, gọi là giải thuật gene.
Năm 1989, Goldberg chỉ ra sự khác nhau chủ yếu giữa GAs và
phương pháp tối ưu truyền thống như sau:
- GAs sử dụng theo xác suất, không phải theo quyết định, để tìm
kiếm các quy tắc.
- GAs sử dụng các thông tin từ hàm mục tiêu, không sư dụng
thông tin biết được khác.
- Đăc trưng của GAs là sử dụng chính sự mã hoá của tập hợp


biến quyết định, không phải là biến quyết định chính bản
thân.
- Những sự tìm kiếm của GAs xuất phát từ tập hợp các biến
quyết định của quần thể, không phải tập hợp biến quyết định
riêng lẻ.
2
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
II. Giải thuật gene.
1. Các khái niệm.
- Nhiễm sắc thể (Chromosomes):
o Trong GAs mỗi cá thể được mã hoá bởi 1 cấu trúc dữ liệu mô tả
cấu trúc gen của cá thể đó, ta gọi là nhiễm sắc thể. Chúng đại
diện cho không gian của các giải pháp ứng cử viên. Nhiễm sắc
thể có thể được mã hoá nhị phân, hoán vị, giá trị và mã hoá cây.
o Đối với bài toán chiếc ba lô loại 2, ta sử dụng mã hoá giá trị.
- Quần thể (Population):
o Là một tập hợp các cá thể, được tiến hoá từ thế hệ này tới thế
hệ khác phụ thuộc vào sự thích nghi của các cá thể.
- Thế hệ (Generation):
o GAs sẽ làm việc trên các cá thể của nhiều quần thể, mỗi quần thể
ứng với một giai đoạn phát triển gọi là thế hệ.
- Hàm thích nghi (Fitness function):
o GAs yêu cầu 1 hàm thích nghi để chứa điểm của mỗi cá thể trong
cộng đồng hiện tại. Từ đó có thể tính toán giải pháp nào được
mã hoá và nắm được cách mà chúng giải quyết vấn đề.
- Kỳ vọng (Hope):
o Hy vọng hế hệ sinh ra sẽ chứa lời giải tốt cho bài toán.
- Toán tử tái sinh (Reproduction) hay toán tử chọn lọn
(Selection):
o Các cá thể tốt được chọn lọc để đưa vào thế hệ sau dựa trên hàm

thích nghi.
- Toán tử lại ghép (Crossover):
o Hai cá thể cha mẹ trao đổi các Gen để tạo ra 2 cá thể con.
- Toán tử đột biến (Mutation):
o Một cá thể thay đổi 1 số Gen không theo quy luật để tạo ra thế hệ
mới.
3
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
2. Cấu trúc cơ bản của GAs.
4
Cài đặt hàm
Procedure GA
begin
t := 0 ;
initialize P(t) ;
evaluate P(t) ;
while (not termination-condition) do
begin
t := t + 1 ;
select P(t) from P(t-1) ;
alter P(t) ;
evaluate P(t) ;
end;
end;
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
a. Mã hoá (Encoding).
- Mã hoá nhị phân (Binary Encoding – BE):
o Là kiểu mã hoá thông dụng nhất bởi vì: nghiên cứu đầu tiên về
thuật toán Gen sử dụng kiểu mã hóa này và bởi vì nó đơn giản.
o Trong BE, mọi nhiễm sắc thể là chuỗi bits - 0 or 1.

o NST A 101100101100101011100101
o NST B 111111100000110000011111
o Các mã hóa này thường không tự nhiên cho nhiều bài toán và
thỉnh thoảng sai sau khi thự hiện các phép toán lai ghép và đột
biến.
- Mã hoá hoán vị (Permutation Encoding – PE):
o Có thể sử dụng để giải quyết các bài toán có thứ tự như: Người
bán hàng
o Trong PE, tất cả các NST là chuỗi các số biểu diễn vị trí trong
một dãy.
o NST A 1 5 3 2 6 4 7 9 8
o NST B 8 5 6 7 2 3 1 4 9
o PEđược sử dụng trong các bài toán có thứ tự. Trong một vài
trường hợp, việc hiệu chỉnh lai ghép và đột biến phải thực hiện
để tạo ra NST phù hợp.
- Mã hoá giá trị (Value Encoding – VE):
o Được sử dụng trong các bài toán mà việc mã hóa nhị phân là
khó thực hiện (Như bài toán knapsack 02).
o Trong VE mỗi nhiễm sắc thể là một chuỗi các giá trị có thể nhận
dạng bất kỳ tùy thuộc vào từng bài toán cụ thể.
o NST A 1.2324 5.3243 0.4556 2.3293 2.4545
o NST B ABDJEIFJDHDIERJFDLDFLFEGT
o NST C (back), (back), (right), (forward), (left)
o Với kiểu mã hóa này thường sẽ phải xây dựng một số phép lai
ghép và đột biến cho các bài tóan cụ thể.
- Mã hoá dạng cây (Tree Encoding – TE):
o TE thường được sử dụng trong các bài toán hoặc các biểu thức
suy luận.
o Trong TE, mỗi NST là một cây gồm các đối tượng như là các
hàm hoặc các câu lệnh của ngôn ngữ lập trình.

o TE thường được dùng đối với các bìa tóan suy luận hoặc các cấu
trúc có thể biểu diễn bằng cây.
o Các phép lai ghép và đột biến đối với kiểu mã hóa này cũng
tương đối dễ thực hiện.
b. Khởi tạo quần thể.
- Thường được chọn random dựa vào yêu cầu bài toán.
5
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
c. Hàm thích nghi.
- Hàm thích nghi định nghĩa tiêu chuẩn để xếp hạng các giả thuyết
tiềm ẩn và để chọn lọc chúng theo xác suất để đưa vào quần thể thế
hệ kế tiếp.
- Mỗi bài toán có một hàm thích nghi riêng.
d. Chọn lọc.
- Các nhiễm sắc thể được chọn từ quần thể là các cha cho lai ghép
(crossover).
- Theo thuyết tiến hoá của Darwin những cá thể tốt nhất sẽ được họn
để lai ghép.
- Có nhiều phương pháp lựa chọn như:
o Roulette Wheel Selection:
 

  !"#
 $%&''!'(
 )*!+, roulette wheel
 /0123131-44544-6%0
!37
 $89-:3131-44544-%+,;
<=-2->
 +,%0!37-0?&

 ,@3A3.;B9CD1!(
• [Tính tổng],ES!37
"B!31F
• [Lựa chọn] GH.!37 r 31
12(0,S)
• [Vòng lặp]I0!37H.rJK
6%0!1;LASA!
;1@ML@@'
o Rank Selection:
 N1-44O44-+4-41?;%"&L;>L!
-0P!
6
11101001000
00001010101
11101010101
00001001000
11101001000
00001010101
11001011000
00101000101
11101001000
00001010101
10001000100
01101011001
11101001000 11101011000
Các chuỗi ban đầu Các cá thể con
Lai ghép điểm đơn:
Lai ghép điểm kép:
Lai ghép đồng nhất:
Đột biến điểm:

Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
 I<Q(@+,";-RSTA!
+,L!3"->
 NL4-412FF.%;
+,D-2!377U9C2

 +,V"?;-1K+,V6-2
4%+,"?;-N+
31F#
o Elitism:
 /21F09W311%431*1K;
-"!"
 X'!'Elitism1'Y'1'ZP!
1*%!#F0
 ,'F8-2F21=!L!
 X'!'Elitism;:1[\K%A;:
L-"!
o Steady-State Selection.
 ,31"!@M?;%+,I0
1#21+,10
 $%+,V%0"'#?97 ;9]%!
+,10?Z@^
 XF8-2F213@M0
o Boltzman selection.
o …
e. Lai ghép và đột biến.
- Đây là 2 phép toán cơ bản của thuật toán gen. Sự hình thành luật
của GAs phụ thuộc rất nhiều vào 2 phép toán này.
- Kiểu và sự thể hiện của các toán tử này phụ thuộc vào kiểu mã hóa
và cũng phụ thuộc vào bài toán.

7
 ,32  !  ?
ZEL
?
  Z  E
9C2!

 _`Z  a  "  B
!  +,  ?  ;
    H
.    ->

+194b1343L
3'1bc44#
+1b433L3'
1b13<43943#
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
- Có nhiều cách để thực hiện việc lai ghép và đột biến:
f. Tiêu chuẩn kết thúc.
- Thuật toán dừng khi quần thể hội tụ, i.e. cá thể tốt nhất trong quần
thể giống với kết quả mong muốn.
- Kết thúc khi số thế hệ sinh ra đạt đến số vòng lặp xác định trước.
- Kết thúc khi các cả thể trở lên giống nhau.
- Kết thúc khi cá thể tốt nhất trong quần thể không thay đổi theo
thời gian.
8
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
III. Áp dụng thuật toán gene vào bài toán Knapsack 02.
1. Mô tả bài toán.
2. Phương án giải bài toán.

a. Mã hoá:
Đối với bài toán knapsack 02, do mỗi vật có thể được chọn nhiều lần nên
ta dùng mã hoá giá trị cho các nhiễm sắc thể.
– VD: Có 1 đoạn gen: 0498392
• Số 0 đầu tiên có nghĩa là vật 1 được chọn 0 lần.
• Số 4 thứ 2 có nghĩa là vật 2 được chọn 4 lần.
• ….
b. Khởi tạo quần thể.
Sau khi mã hoá ta được quần thể với các gen ngẫu nhiên nên sẽ có những
cá thể không thoả mãn yêu cầu đề bài là khối lượng. Những cá thể thoả
mãn sẽ được giữ lại tạo thành 1 quần thể mới. Quần thể này dung để chọn
lọc và lai ghép.
c. Hàm thích nghi.
9
• Đơn vị đ/c chuẩn bị hành
quân.
• Ngoài những quân dụng bắt
buộc phải mang theo, đ/c còn
phải chọn một số vật dụng
khác phải mang theo để phục
vụ sinh hoạt
• Tuy nhiên balo của đ/c có hạn
và chỉ để được một khối
lượng k. Giả sử 1 đồ dùng có
khối lượng w và giá trị sử
dụng c, 1 vật có nhiều số
lượng và có thể chọn nhiều
lần.
• Đ/c phải chọn đồ để bỏ vào
balo sao cho không vượt quá

khối lượng k và giá trị sử
dụng c sao cho lớn nhất có
thể.
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
Hàm thích nghi được xây dựng trên tổng khối lượng của mỗi cá thể.
Sau khi chọn được cá thể ta sẽ tính khối lượng dựa trên số lần chọn vật và
khối lượng từng vật.
– Nếu tổng khối lượng lớn hơn khả năng chứa của balo thì cá thể sẽ
bị loại bỏ.
– Nếu tổng khối lượng nhỏ hơn hoặc bằng sức chứa của balo thì ta
tiếp tục thuật toán.
– Nếu số cá thể còn lại ít hơn số cá thể giới hạn của quần thể thì ta
tiếp tục lai ghép các cá thể bố mẹ cho đến khi nào đủ cá thể thoả
mãn cho quần thể mới.
d. Lựa chọn cá thể.
Theo yêu cầu của bài toán ta sử dụng phương pháp chọn Elitism.
Phương pháp này cho phép copy những cá tốt sang quần thể mới.
Những cá thể còn lại sẽ được chọn theo phương pháp khác.
Để đánh giá cá thể tốt hay không ta cần 1 hàm đánh giá, hàm đánh giá
này trả về giá trị là tổng giá trị trong balo sau khi chọn các vật. Các cá thể
có giá trị cao sẽ được lưu lại.
e. Lai ghép
Là 1 phép toán cơ bản của thuật toán Gen. Có nhiều cách để lai ghép
phụ thuộc vào cách mã hoá ở trên. Với cách mã hoá giá trị, ta sử dụng
cách lai ghép:
Cắt một đoạn Gen của cá thể a ghép vào 1 đoạn gen của cá thể b. Sau
mỗi lần lai ghép ta phải kiểm tra hàm thích nghi, chỉ lấy những cá thể
thoả mã hàm thích nghi.
Đối với bài toán này, ta lấy tỉ lệ lai ghép mặc định là 80%.
f. Đột biến.

Đối với bài toán mã hoá theo giá trị ta cộng hoặc trừ đi 1 số từ các giá
trị được chọn trong cá thể đột biến.
Về tỉ lệ đột biến: Nếu ta chọn tỉ lệ quá cao thì kết quả sẽ khó có thể hội
tụ được. Còn nếu quá thấp thì cũng sẽ có ít khả năng ảnh hưởng đến bài
toán.
Trong chương trình, ta lấy tỉ lệ đột biến mặc định là 1%.
g. Điều kiện dừng.
10
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
Nếu đủ thời gian ta sẽ cho thuật toán chạy đến khi các cá thể không
thay đổi theo thời gian hoặc các cá thể sinh ra là giống hệt nhau.
Nếu không có đủ thời gian ta sẽ lấy kết quả tốt nhất trong thời gian
chạy thuật toán để làm lời giải cho bài toán.
Trong chương trình, tôi để mặc định là chạy 1000 lần thì dừng thuật
toán.
IV. Ưu và nhược điểm.
1. Ưu điểm.
- GAs có khả năng chạy song song.
- Ít bị rơi vào cực trị địa phương (Giải quyết bằng đột biến).
- Với cùng cách mã hoá có thể thay đổi hàm thích nghi.
- Khi đã có thuật toán gene cơ bản, chỉ cần viết 1 nhiễm sắc thể mới để
xử lý một bài toán khác.
2. Nhược điểm.
- Thời gian tính toán có thể chậm hơn các thuật toán khác.
- Quá trình tính toán có thể kết thúc bất cứ lúc nào, không có kế hoạch
trước.
- Giống như tiến hoá tự nhiên, cha mẹ tốt chưa chắc đã sinh ra con tốt.
Nên dùng giải thuật gene để giải bài toán này khi giữ lại những cá thể
tốt trong quần thể chưa chắc sau khi lai ghép đã sinh ra được cá thể tốt
hơn.

V. Kết luận.
Thuật toán gene là một thuật toán tối ưu khá hiệu quả, mô phỏng sự
tiến hoá của tự nhiên. Thuật toán này có ưu điểm mà các thuật toán
tìm kiếm khác thường mắc phải đó là giảm thiểu được khả năng rơi
vào khoảng nghiệm cục bộ của bài toán.
Trong quá trình nghiên cứu còn nhiều thiếu xót, kính mong thầy nhận
xét và bổ sung cho em để em có thể hoàn thiện được kiến thức của
mình.
Em xin chân thành cảm ơn !!!
Tài liệu tham khảo:
11
Genetic Algorithms and Knapsack 02 problem Lý Thanh Bình – TH46
o Bài 3-2: Slide trí tuệ nhân tạo – TS.Ngô Hữu Phúc.
o Và một số tài liệu khác trên webside: www.123doc.vn.
12

×