Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thi toán thpt khối 12 (132)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.03 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 5.

x+1
bằng
Câu 2. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
3
2
x−2
Câu 3. Tính lim
x→+∞ x + 3
2
A. 2.


B. − .
3
2n + 1
Câu 4. Tính giới hạn lim
3n + 2
3
A. .
B. 0.
2
x+1
bằng
Câu 5. Tính lim
x→+∞ 4x + 3
1
A. 1.
B. .
3
Câu 6. !Dãy số nào sau đây có giới !hạn là 0?
n
n
1
5
A.
.
B. − .
3
3
4x + 1
bằng?
x→−∞ x + 1

A. 4.
B. 2.
2x + 1
Câu 8. Tính giới hạn lim
x→+∞ x + 1
A. 2.
B. 1.

C. 9.

D. 0.

C. 1.

D.

C. 1.

D. −3.

1
.
6

C.

1
.
2


D.

2
.
3

C.

1
.
4

D. 3.

!n
4
C.
.
e

!n
5
D.
.
3

C. −1.

D. −4.


C. −1.

D.

Câu 7. [1] Tính lim

Câu 9. Dãy số
!n nào có giới hạn bằng 0? !n
6
−2
A. un =
.
B. un =
.
5
3
Câu 10. Tính lim
x→2

A. 2.

C. un =

x+2
bằng?
x
B. 0.

n3 − 3n
.

n+1

C. 1.

D. un = n2 − 4n.

D. 3.

log 2x
Câu 11. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
0
A. y0 = 3
.
C.
y
=
.
B. y0 =
.
2x ln 10
x3
x3 ln 10


1

.
2



D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4

Câu 13. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 62.
D. 64.
Câu 12. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4


1−x2

− 4.2 x+

1−x2

Trang 1/5 Mã đề 1


Câu 14. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 13.
C. 2020.
D. log2 2020.
1
Câu 15. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
1
Câu 16. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.

Câu 17. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.

D. Vơ nghiệm.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m > 4.

Câu 18. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m ≤ 0.

Câu 19. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4

4
Câu 20. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 4).
12 + 22 + · · · + n2
n3
2
B. .
3

Câu 21. [3-1133d] Tính lim

1
.
3
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 22. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 3.
C. 4.
D. 5.
un

Câu 23. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
n−1
Câu 24. Tính lim 2
n +2
A. 1.
B. 0.
C. 3.
D. 2.
A. +∞.

C. 0.

D.

Câu 25. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn

!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
5
Câu 26. Tính lim
n+3
A. 0.

B. 2.

Câu 27. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n

C. 1.
C.

1
.
n

D. 3.

1
D. √ .
n
Trang 2/5 Mã đề 1


!
1
1
1
Câu 28. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. +∞.
2
2
Câu 29. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
n2 − 2
.
B.
u
=
.

C. un =
.
A. un =
n
2
2
5n − 3n
(n + 1)
5n + n2
Câu 30. Tính lim

D. 2.

D. un =

n2 − 3n
.
n2

2n2 − 1
3n6 + n4

2
.
D. 1.
3
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab

1
ab
A. √
.
B. 2
.
D. √
.
.
C. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
A. 2.

B. 0.

C.

d = 120◦ .
Câu 32. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 2a.
D. 4a.

2
0 0 0 0
0
Câu 33.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
3a
Câu 34. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a

a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
3
2

6

Câu 36. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
a 38
3a 58
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
[ = 60◦ , S O
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
[ = 60◦ , S O
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19

19
17
Câu 39. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
Trang 3/5 Mã đề 1


A.

5a
.
9

B.

8a
.
9

C.

a
.
9

D.

2a
.

9

d = 30◦ , biết S BC là tam giác đều
Câu 40. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
26
13
16
Câu 41.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
f (x)g(x)dx =


A.
Z
C.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

B.
Z
D.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Câu 42.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =

f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 43. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.


C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.

Câu 44. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 45. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 1.

C. 3.

D. 2.

Câu 46. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 4/5 Mã đề 1


Câu 47. Trong các khẳng định sau, khẳng định nào sai?

A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 48. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 49. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

C. (I) và (III).

D. (II) và (III).


Câu 50. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

D

3.


C

4.

D

5.

C

6. A

7. A
9.

8. A
10. A

B

11.

C

12.

B

13.


C

14.

B

15.

16. A

B

18. A

17. A
19.
21.

D

22.

C

23.
25.

20. A

C


24.

B

C
B

26. A
28.

27. A

D

29.

C

30.

B

31.

C

32.

B


33.

B

35.

D

37.
39.

34.

C

36.

C

38.

C
B

41. A

40.

C


42.

C

43.

C

44.

45.

C

46. A

47.

B

48. A

49.

B

50. A

1


B

B



×