Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn tập thpt môn toán ku3 (70)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.65 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là



a3 3
2a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
3
6
Câu 2. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?


A. Có một.
B. Có vơ số.
C. Khơng có.
D. Có hai.
Câu 3. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.
cos n + sin n
Câu 4. Tính lim
n2 + 1
A. +∞.
B. 0.

C. 5.

D. 7.

C. 1.

D. −∞.

Câu 5. Tính thể tích khối lập phương biết tổng diện tích tất
√ cả các mặt bằng 18.
A. 9.
B. 8.
C. 3 3.
D. 27.
Câu 6. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.

B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 7. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 2.
B. 1.
C.
.
D. 3.
3
x+2
Câu 8. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 9.
các khẳng định sau, khẳng định nào sai?

Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
x+3
Câu 10. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 11. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = 1 + ln x.

D. y0 = x + ln x.
d = 60◦ . Đường chéo
Câu 12. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0

Trang 1/4 Mã đề 1






4a3 6
2a3 6
3
A.
.
B. a 6.
C.
.
3
3
Câu 13. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m > 0.


a3 6
D.
.
3
D. m < 0.

Câu 14. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.

B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 15. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.(1, 01)3
triệu.
B. m =
A. m =
triệu.
3
(1, 12)3 − 1
100.1, 03
(1, 01)3
triệu.
D. m =
triệu.
C. m =
3
(1, 01) − 1
3
Câu 16. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = 3S h.
B. V = S h.
C. V = S h.

3
Câu 17. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
C. 8.
Câu 18. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
Câu 19. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.
1 − 2n
Câu 20. [1] Tính lim
bằng?
3n + 1
2
1
A. 1.
B. .
C. .
3
3
Câu 21. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.
C. 30.

1

D. V = S h.
2
D. 20.
D. Vô nghiệm.
D. 6 mặt.

2
D. − .
3
D. 12.

Câu 22. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 23. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 8 m.
D. 12 m.
Câu 24. Xét hai câu sau
Z
Z
Z

(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 2/4 Mã đề 1


(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

2n + 1
3n + 2
3
1
2
A. 0.
B. .
C. .
D. .
2
2
3
Câu 26. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là




a3 15
a3 6
a3 5
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 25. Tính giới hạn lim

Câu 27. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. 0.

C. 1.

D. +∞.


Câu 28. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 3.
C. 1.

Câu 29. [1-c] Giá trị biểu thức
A. 4.


Câu 30. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = R \ {1; 2}.

D. −8.

2

D. D = [2; 1].

Câu 31. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
A. −
.
B. − .
C.
.
D.
.
100
16
100
25


Câu 32. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. 3.
C. .
D. − .
3
3
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 34. Tính lim
x→2

A. 2.

x+2

bằng?
x
B. 1.
!4x

2
3
Câu 35. Tập các số x thỏa mãn

#
" 3 ! 2
2
2
A. −∞; .
B.
; +∞ .
3
5

C. 3.

D. 0.

"
!
2
C. − ; +∞ .
3

#

2
D. −∞; .
5

!2−x


Trang 3/4 Mã đề 1


Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
6
12
x−1 y z+1

= =

Câu 37. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
Câu 38. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
2−n
Câu 39. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.

C. 4.

D. 6.

C. 2.

D. −1.
!x


1

9
C. − log2 3.

Câu 40. [2] Tổng các nghiệm của phương trình 31−x = 2 +
A. log2 3.

B. − log3 2.

D. 1 − log2 3.

Câu 41. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. −3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.
3

2


D. 3 + 4 2.

Câu 42. Phát biểu nào sau đây là sai?
1
= 0.
nk

1
C. lim qn = 0 (|q| > 1).
D. lim = 0.
n
Câu 43. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
A. lim un = c (un = c là hằng số).

B. lim

Câu 44. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
12
24
6

Câu 45. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 12.
D. 6.
Câu 46. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {3; 3}.

D. {5; 3}.

Câu 47. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).

D. (2; +∞).
3

Câu 48. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 49. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.

C. 9.

D. Không tồn tại.

Câu 50. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. a.
B.
.
C. .
D. .
2
2
3
Trang 4/4 Mã đề 1


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A


2.

3. A

4.
C

5.

B
C

6.

7. A

8.

9. A

10.
C

11.

D

12.


B
D
B

14.

13. A
15.

C

D

16.

B
B

17.

B

18.

19.

B

20.


D

22.

D

21.

C

23. A

24.

25.
27.

D

26. A
28.

B

29.

D

32.


33. A

34. A
C

37. A
39.

D

41. A
43.

D

C

36.

D

38.

D

40.

C

42.


C

44. A

45. A

46. A

47.
49.

D

30. A

31. A
35.

C

48.

C

50. A

B

1


D



×