Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 1 (338)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.55 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1.Z Các khẳng
! định nào sau đây là sai?
0

f (x)dx = f (x).

A.
Z
C.

f (x)dx = F(x) + C ⇒

Z
B.

Z

f (t)dt = F(t) + C. D.

Z

k f (x)dx = k



Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .
B. 20a3 .
C.
.
D. 40a3 .
3
Câu 3. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.

Câu 4. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
2

C. D = [2; 1].


D. D = R.

C. 6.

D. 108.

Câu 5. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới "đây?!
5
5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).
2
2


ab. Giá

Câu 6. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
sai.
Câu 7. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.

C. f (x) có giá trị nhỏ nhất trên K.

C. Câu (II) sai.

D. Câu (I) sai.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 8. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
D. 6 3.
.
B.
.
C. 8 3.
A.
3
3
2

2


sin x
Câu 9. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số
√ f (x) = 2
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.

Câu 10. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 11. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
Trang 1/5 Mã đề 1


Câu 12. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của

mơđun z.




5 13
A. 2 13.
B. 26.
C.
.
D. 2.
13
log2 240 log2 15

+ log2 1 bằng
Câu 13. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 1.
C. 3.
D. 4.
Câu 14.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.
Z
B.


[ f (x) − g(x)]dx =

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 15. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

C. y0 =


1
2 x . ln

x

.

D. y0 =

1
.
ln 2

[ = 60◦ , S A ⊥ (ABCD).
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3
3

a
2
a
2
a
3

A. a3 3.
B.
.
C.
.
D.
.
12
4
6
Câu 17. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 18. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).

D. [1; 2].

d = 120◦ .
Câu 19. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 2a.
B. 4a.
C. 3a.

D.
2
d = 60◦ . Đường chéo
Câu 20. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 21. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?

A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
q
2
Câu 22. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 23. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.

C. 0.

D. 3.
Trang 2/5 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 − 19
18 11 − 29
C. Pmin =
. D. Pmin =
.
9
21

Câu 24. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
2 11 − 3
A. Pmin =
.
3

B. Pmin


9 11 + 19

=
.
9

Câu 25. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
12 + 22 + · · · + n2
Câu 26. [3-1133d] Tính lim
n3
2
1
A. .
B. .

3
3

C. +∞.

D. 0.

Câu 27. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
Câu 28. Hàm số nào sau đây khơng có cực trị
1
x−2
.

B. y = x + .
A. y =
2x + 1
x

C. y = x3 − 3x.
!
1
1
1
Câu 29. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
B. +∞.
C. 2.
A. .
2

D. y = x4 − 2x + 1.

D.

5
.
2

Câu 30. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng

23
1079
1728
1637
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
Câu 31. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 4.
D. 12.
Câu 32. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.1, 03
A. m =

triệu.
B.
m
=
triệu.
(1, 12)3 − 1
3
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1

Câu 33. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3
A.
.
B.
.
C. a3 3.
D.

.
3
12
4
2n + 1
Câu 34. Tìm giới hạn lim
n+1
A. 0.
B. 1.
C. 3.
D. 2.
Trang 3/5 Mã đề 1


Câu 35. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
B. −
.
C.
.
D.
.
A. − .
16
100
25

100
Câu 36. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 9 năm.
D. 8 năm.
!4x
!2−x
3
2


Câu 37. Tập các số x thỏa mãn
3
2
#
"
!
#
"
!
2
2
2
2
A. −∞; .
B.
; +∞ .

C. −∞; .
D. − ; +∞ .
5
5
3
3
Câu 38. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.

D. {3; 3}.

Câu 39. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 40. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.

B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.



x=t




Câu 41. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2

2
2
2
2
D. (x − 3) + (y − 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z − 3) = .
4
4
2
2
Câu 42. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −7.
B. Khơng tồn tại.
C. −5.
D. −3.
Câu 43. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



c a2 + b2
abc b2 + c2
b a2 + c2
a b2 + c2
A. √
.
B. √
.

C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x2 − 3x + 3
Câu 44. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 0.
C. x = 3.
D. x = 2.
Câu 45. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + sin x cos x.

Câu 46. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.

D. 3 nghiệm.


Câu 47. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.

D. 7, 2.
Trang 4/5 Mã đề 1


9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 0.
C. 1.
D. 2.
cos n + sin n
Câu 49. Tính lim
n2 + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 48. [4] Xét hàm số f (t) =

Câu 50. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = 1.


C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = ln 10.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4. A

5.


B

6. A
C

9.

10. A
D

11.

12.

D

18.

19.

D

20.

23.

C

26.


C

C

31.

D

33. A

B

30.

D

32.

D

34.

D

36.

B

37.


D

39. A
B

43.

D

C

38.

B

40.

B

42.

B

44. A
46.

B

47.


D

28. A

B

29.

49.

B

24. A
D

25.

45.

C

22.

21. A

41.

D


16.

B

17.

35.

C

14.

13. A

27.

D

8.

7. A

15.

B

C
B

1


B

48.

D

50.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×