Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn thi thptqg toán (53)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (106.2 KB, 4 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 3 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −3.

D. −5.

3
2
Câu 2. [2] Tìm m để giá trị lớn nhất của
+ 1)2 x trên [0; 1] bằng 8
√ hàm số y = 2x + (m √
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.

Câu 3. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng




b a2 + c2
a b2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 6
a3 3
A.

.
B.
.
C.
.
D.
.
48
16
48
24
12 + 22 + · · · + n2
Câu 5. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. 0.
D. .
3
3
Câu 6. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
1
1
A.
.
B.

.
C. √ .
D. .
n
n
n
n
Câu 7. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

C. 6.

D. 5.
tan x + m
nghịch biến trên khoảng
Câu 8. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
 π
Câu 9. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
3 π6

2 π4
A. e .
e .
e .
B.
C.
D. 1.
2
2
2
Câu 10. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = x
.
ln 2
2 . ln x
Câu 11. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
π

Câu 12. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 2.
Câu 13. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
Trang 1/3 Mã đề 1


Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.

D.
.
A.
4
6
12
12
Câu 15. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
C. 9 cạnh.
D. 11 cạnh.
1 − n2
Câu 16. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
2
2

C.

1
.
3

D. 0.


2
Câu 17. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.

Câu 18. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 11 năm.
D. 12 năm.
Câu 19. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 20. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 21. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.

C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Câu 22. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

Câu 23. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m ≥ 0.
C. m > 1.

D. m > 0.

3
2
Câu 24. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

B. −3 + 4 2.
C. 3 + 4 2.

A. −3 − 4 2.


D. 3 − 4 2.

0 0 0 0
0
Câu 25.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
7
3
2

Trang 2/3 Mã đề 1



Câu 26. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 5
a3 6
a3 15
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
cos n + sin n
Câu 27. Tính lim
n2 + 1
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 28. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.


D. 7 mặt.

Câu 29. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.
3
3

!n
4
D.
.
e

!n
1
C.
.
3

Câu 30. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.

B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 31. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 10.
D. ln 4.
Câu 32.√Thể tích của tứ diện đều √
cạnh bằng a

a3 2
a3 2
a3 2
.
B.
.
C.
.
A.
2
4
12
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.


a3 2
D.

.
6
D. −2 + 2 ln 2.

Câu 34. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = 0.
D. m = −2.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 35. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
.
B.
.
C.
.
D. 2a2 2.
A.
24
24
12
2

x −9
Câu 36. Tính lim
x→3 x − 3
A. 3.
B. +∞.
C. 6.
D. −3.

Câu 37. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 64.
D. 62.
Câu 38. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 39. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.

D. 2
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 40. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
C. 30.
D. 12.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 3/3 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2.
B

4. A

5. A

6. A


7.

C

9.

C

8.

D

10. A

11.

B

12. A

13.

B

14.

15. A
17.


C

C

16. A
18.

B

19.

20.

C

D
B

21. A

22.

23. A

24.

B

26.


B

25.
27.
29.

C
B

28. A
30.

C

31. A
33.

D

32.

C

34.

C

35. A
37.


D

D

36.
D

38.

39. A

40. A

1

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×