Tải bản đầy đủ (.pdf) (5 trang)

Đề toán ôn thpt 12 số 2 (552)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119.43 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 2. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0 D) bằng




a 3
a 3
2a 3
A. a 3.
.
C.
.
D.
.


B.
2
2
3
Câu 3. Cho z là nghiệm của phương trình √x2 + x + 1 = 0. Tính P = √
z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P =
.
D.
2
2
 π
Câu 4. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π
2 π4
3 π6
B. e 3 .
C.
D.
A.
e .
e .

2
2
2
2n + 1
Câu 5. Tính giới hạn lim
3n + 2
3
2
A. 0.
B. .
C. .
D.
3
2

P = 2i.

1.

1
.
2

Câu 6. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 7. Tính thể tích khối lập phương

biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 3 3.
C. 27.
D. 8.
!2x−1
!2−x
3
3
Câu 8. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).
D. [3; +∞).
1

Câu 9. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = (1; +∞).

D. D = R \ {1}.

Câu 10. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1

A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
d = 300 .
Câu 11. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.

3a3 3
a 3
A. V =
.
B. V =
.
C. V = 3a3 3.
D. V = 6a3 .
2
2
Câu 12. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.
C. 12.
D. 30.
4x + 1
Câu 13. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.

B. 2.
C. −1.
D. −4.
Câu 14. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 24.

D. 4.
Trang 1/4 Mã đề 1


d = 60◦ . Đường chéo
Câu 15. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
.
B.
.
C.
.
D. a3 6.

A.
3
3
3
Câu 16. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
log 2x

x2
1 − 2 log 2x
1
B. y0 =
.
C. y0 = 3
.
3
x
2x ln 10

Câu 17. [1229d] Đạo hàm của hàm số y =
A. y0 =

1 − 4 ln 2x
.
2x3 ln 10

Câu 18. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .

B.
.
n
n

C.

n+1
.
n

Câu 19. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Không tồn tại.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. −8.

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

1
D. √ .

n
D. 13.

Câu 20. [1-c] Giá trị biểu thức
A. 1.

D. 3.

Câu 21. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 22. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.

D. 0.

Câu 23. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1

d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 24. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .

x2 + 3x + 5
Câu 25. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 1.
D. 0.
4
4
2
Câu 26. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.


D. |z| =


5.

Câu 27. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.

B. +∞.

C. 2.

Câu 28. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 12.

D. 1.
D. 3.
Trang 2/4 Mã đề 1


Câu 29. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.

100.1, 03
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
tan x + m
Câu 30. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
1
Câu 31. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy

3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.
Câu 32. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 2, 4, 8.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 33. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a 15
a3 6
a3 5
3
A. a 6.
B.
.
C.
.

D.
.
3
3
3
x−1
Câu 34. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
A. 2 2.
B. 6.
C. 2 3.
D. 2.
Câu 35. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai. C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.



Câu 36. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 37. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. − .
D. −e.
e
2e
e
ln x p 2
1
Câu 38. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1

8
8
A. .
B. .
C. .
D. .
9
3
3
9
Trang 3/4 Mã đề 1


Câu 39. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1079
1637
A.
.
B.
.
C.
.
D.
.
68
4913
4913

4913
1
Câu 40. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 2.
D. 1.
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
4a 3
a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.

9
9
9
3
Câu 42. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (1; +∞).
D. (−∞; −1).
cos n + sin n
Câu 43. Tính lim
n2 + 1
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 44. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.

D. Hai mặt.
π
Câu 45. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.

B. T = 2 3.
C. T = 4.
D. T = 2.
Câu 46. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.

C. 1.

D. 0.

Câu 47. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
2n2 − 1
Câu 48. Tính lim 6
3n + n4
2
A. 0.
B. .
C. 1.
D. 2.
3
Câu 49. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng

5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 50. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 22.
D. 21.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C

3. A

D


4. A

5.

B

6.

B

7.

B

8.

B

10.

C

9.
11. A

12.

13. A


14.

D
C
B

15.

D

16.

C

17.

D

18.

C

20.

C

19.

B


22.

21. A
23.

B

24. A

25.

B

26.

27.

D
C

28.

C

D

29. A

30.


31. A

32.

C

34.

C

33.

C

35. A
37.

B
D

39.
41. A
43.
45.
47.

D

B


36.

D

38.

D

40.

D

42.

B

44.

B

46.

C
D

D

48. A

49. A


50.

1

C



×