Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg 1 (4)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.65 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
D. lim un = 1.
C. lim un = .
2
Câu 2. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.
C. 20.
D. 30.
Câu 1. [3-1132d] Cho dãy số (un ) với un =

Câu 3. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.


B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
C.
f (x)dx = f (x).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 4. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 27.

D. 10.
y
z+1
x−1
= =

Câu 5. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 6. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là

a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
12
6
24
Câu 7.
Z Các khẳng định
Z nào sau đây là sai?
Z
Z
k f (x)dx = k

A.
Z
C.

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = f (x).

f (t)dt = F(t) + C.

Câu 8. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 9. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
!3
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
d = 120◦ .
Câu 10. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.

B.
.
C. 3a.
D. 2a.
2
Trang 1/4 Mã đề 1


Câu 11. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
Câu 12. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
23
9
.
B.
.
C. − .
D. −
.
A.
25
100
16
100

π
Câu 13. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 2.
D. T = 2 3.
A. T = 4.
B. T = 3 3 + 1.
Câu 14. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 1202 m.
D. 2400 m.
Câu 15. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 16. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.


Câu 17. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √


A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 18. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


3
3
3

a
3
2a
3
a
3
B.
.
C.
.
D.
.
A. a3 3.
6
3
3
Câu 19. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1

1
B. V = S h.
C. V = S h.
D. V = 3S h.
A. V = S h.
3
2
Câu 20. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x4 − 2x + 1.
B. y = x + .
C. y = x3 − 3x.
D. y =
.
x
2x + 1
log 2x
Câu 21. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
.
B. y0 = 3
.
C. y0 =
.

D. y0 = 3
.
A. y0 =
3
3
x
2x ln 10
2x ln 10
x ln 10
1 − xy
Câu 22. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
2 11 − 3
18 11 − 29
9 11 + 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
21

9
Câu 23. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 24. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 2/4 Mã đề 1


(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên sai.
0

0

0


C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

0

0
Câu 25.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
2
2
7
3
Câu 26. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. V = 4π.

C. 32π.
D. 16π.

Câu 27. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 28. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.

C. 8.

D. 10.
q
Câu 29. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 30. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
d = 90◦ , ABC

d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 31. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là



3
3
3

a
a
a
3
3
2
.
C.
.
D.
.
B.
A. 2a2 2.
24
12
24
Z 3
x
a
a

Câu 32. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.
!
5 − 12x
Câu 33. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 34. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D.
 π
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2

1 π3
3 π6
A. e .
B. 1.

C.
e .
D.
2
2
Câu 36. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D.
Câu 37. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
Câu 38. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n

C. y0 = 1 − ln x.
C.

1
.
n

4 đỉnh, 6 cạnh, 4 mặt.


2 π4
e .
2
Khối tứ diện đều.

D. y0 = x + ln x.
1
D. √ .
n
Trang 3/4 Mã đề 1


Câu 39. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.

C. 8.

D. 30.

Câu 40. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.

Câu 41. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.

D. 5.

Câu 42. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. −∞; .
C. − ; +∞ .
A. −∞; − .
2
2
2

!
1
D.
; +∞ .
2

2

Câu 43. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
Câu 44. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. (1; 2).
D. [3; 4).
2
2


ab.

Câu 45. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.

B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 46. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 47. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
1

Câu 48. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = (1; +∞).


Câu 49. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là

πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
6
3
Câu 50. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = 2 x . ln x.
C. y0 = x
.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
5.

2.

C
D

4.

B

D
B

6. A

7.

C

8.

B


9.

C

10.

B

D

11.
13. A

14.

15. A

16. A
D

17.
19. A
21.

D

B

18.


D

20.

D

22.

B
D

24.

23. A
D

25.

27.

28. A

B

29. A

30.

31.


D

32.

C

34.
36.

D

12.

D

33. A
D

35.

B

D

37.

B

38. A


39.

B

40. A

41.

B

42.
44.

43.

C
B

D

45. A

46.

D

47.

48.


D

49.

50.

D

1

C
D



×