Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg 1 (555)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (112.46 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S√H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD là

4a3
2a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
4x + 1
Câu 2. [1] Tính lim


bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. −1.
D. 2.
Câu 3. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
.
B.
.
C. y0 = .
D. y0 =
.
A. y0 =
x
10 ln x
x
x ln 10
Câu 4. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .
C. −e.
D. − .

2e
e
e
Câu 5. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 6. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
18
9
6
2n + 1
Câu 7. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. 0.
C. .
D. .

3
2
2
Câu 8. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5
A.
.
B.
.
C.
.
D.
.
5
25
3
25
2n + 1
Câu 9. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.
D. 0.
Câu 10. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
A. 2e.
B. .
C. 3.
e
Câu 11. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.
C. 10.
1
Câu 12. [1] Giá trị của biểu thức log √3
bằng
10
1
A. −3.
B. 3.
C. − .
3

x2 + 3x + 5
Câu 13. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. 1.
C. − .
4

D. 2e + 1.

D. 3.

D.

1
.
3

D.

1
.
4
Trang 1/4 Mã đề 1


Câu 14. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 15. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 16. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 12.
D. 18.

2
Câu 17. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01) − 1
3
120.(1, 12)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
3
Câu 18. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).

Câu 19. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + .
D. T = e + 3.
A. T = e + 1.
B. T = 4 + .
e
e
Câu 20. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2

C. y0 =

1
2 x . ln

x

.

D. y0 = 2 x . ln x.

Câu 21. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?

A. 6.
B. 4.
C. 8.
D. 3.
Câu 22. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. [−3; +∞).
D. (−∞; −3).

Câu 23. [4-1212d] Cho hai hàm số y =

Câu 24. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể

tích khối √
chóp S .ABMN là



3
2a 3
4a3 3
a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 25. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.
x2 − 5x + 6
x→2
x−2
B. −1.


C. {4; 3}.

D. {3; 3}.

C. 1.

D. 5.

Câu 26. Tính giới hạn lim
A. 0.

Trang 2/4 Mã đề 1


Câu 27. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. 1.
B. .
C. .
D.
.
2
2
2
Câu 28. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −2.

A. −4.
B. −7.
C.
27
Câu 29. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) − g(x)] = a − b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 30.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Câu 31. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
A.
.
B.
.
C. a 6.
.
D.
3
6
2
x+1
Câu 32. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. .
D. 3.
3
4
Câu 33. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.


D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 34. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4

Câu 35. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
A. 2a 2.
B. V = 2a .
C. V = a 2.
D.
.
3
Câu 36. Giá trị của lim(2x2 − 3x + 1) là

x→1
A. 0.
B. 2.
C. 1.
D. +∞.
Câu 37. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 38. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là

3
3
a 3
a
a
3
A.
.
B. a3 .
C.
.
D.
.
3
3

9
1
Câu 39. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 40. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 7.
D. 5.
2
2
Trang 3/4 Mã đề 1


Câu 41. Gọi F(x) là một nguyên hàm của hàm y =
1
8
A. .
B. .
3
3
cos n + sin n
Câu 42. Tính lim
n2 + 1

A. +∞.
B. 1.
2
2n − 1
Câu 43. Tính lim 6
3n + n4
A. 2.
B. 1.

ln x p 2
1
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
C. .
D. .
9
9

C. −∞.

D. 0.

C. 0.

D.

Câu 44. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là

A. Vô nghiệm.
B. 2.
C. 3.

2
.
3

D. 1.

q
Câu 45. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
x−3 x−2 x−1
x
Câu 46. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm

phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
1
Câu 47. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. 2.
D. −2.
Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
2−n
bằng
Câu 49. Giá trị của giới hạn lim
n+1
A. 1.
B. −1.
C. 0.
D. 2.
Câu 50. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.


D. {3; 5}.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

B
D

3.

4. A

5.

B

7. A

8.


B

9.

10.

C

11.

12.

C

13.

B
D
C

14.

D

15. A

16.

D


17. A

18.

D

19.

D

20. A

21.

D

22. A

23.
C

24.
26.

27. A

28.

D


29.

30.

D

31.

34.

D
B

33.

C
B

D

35. A

36. A
38.

C

25.

B


32.

B

37.

C
D

39.

C

40. A

41.

C
C

42.

D

43.

44.

D


45.

D

47.

D

46.

C

48.

D

50.

D

49.

1

B




×