Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg 1 (512)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119.48 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 2. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 3. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.

B. f 0 (0) = ln 10.

C. f 0 (0) =

1
.
ln 10


D. f 0 (0) = 10.
q
2
Câu 4. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 5. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

x→a

Câu 6. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.

C. 24.
D. 20.
! x3 −3mx2 +m
1
nghịch biến trên khoảng
Câu 7. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m , 0.
1
Câu 8. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 9. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3


. Khi đó thể tích khối lăng trụ là
4 √



a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
36
24
Câu 10. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m > − .
D. m ≥ 0.
4

4
Câu 11. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.
D. 4 mặt.
Câu 12. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
Trang 1/4 Mã đề 1


5
.
B. 9.
2
Câu 13. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.
A.

7
.
2

D. 6.

C. 0.

D. 1.


C.

Câu 14. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.

D.
.
9
9
9
3
Câu 16. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = 0.
D. x = −8.
Câu 17. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).
C. [1; 2].
x+2
bằng?
Câu 18. Tính lim
x→2
x
A. 0.
B. 2.
C. 3.

D. (−∞; +∞).

D. 1.

d = 120◦ .
Câu 19. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C. 2a.
D.
.
2
 π
x
Câu 20. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


1 π3
3 π6
2 π4
B.
e .
C. 1.
D.
e .
A. e .
2
2
2
Câu 21. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với

√tích là
√mặt phẳng (AIC) có diện
2
2
2
2
a 5
a 7
a 2
11a
A.
.
B.
.
C.
.
D.
.
32
16
8
4

Câu 22. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3

a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
6
18
Câu 23. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 24. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
2
3

Câu 25. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
Câu 26. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
Trang 2/4 Mã đề 1


20
40
20
10
C50
.(3)20
C50
.(3)10
C50
.(3)30
C50
.(3)40
.
B.
.
C.
.

D.
.
450
450
450
450
Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2


A.

Câu 28. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
Câu 29. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
Câu 30. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. 6.

D. 10.

Câu 31. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
Câu 32. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng





2a 3
a 3
a 3
.
C.
.
D.
.
B.
A. a 3.
2
2
3
Câu 33. Dãy! số nào có giới hạn bằng 0?!
n
n
6
−2
n3 − 3n
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
A. un =

5
3
n+1
Câu 34. [1-c] Giá trị của biểu thức

log7 16
log7 15 − log7

A. −4.

B. −2.
x − 3x + 3
Câu 35. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 3.

15
30

bằng
C. 2.

D. 4.

C. x = 0.

D. x = 1.


2

Câu 36. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.
Câu 37. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.

D. Hình lăng trụ.

C. 6.

D. 8.
tan x + m
Câu 38. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
Câu 39. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .

D. 3.
e
Câu 40. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 17 tháng.
D. 18 tháng.
Trang 3/4 Mã đề 1


Câu 41. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn

Câu 42. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. .
n
n

1
C. √ .
n

D.

sin n
.
n

2
Câu 43. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.

Câu 44. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết

a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
4a 3
2a
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 45. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.
C. 24.
D. 4.
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là


3
3
a
2a 3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3
3

Câu 47. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).

2
2
log 2x
Câu 48. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
3
3
2x ln 10
x
x ln 10
Câu 49. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
5
Câu 50. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

A. 5.
B. 25.
C. 5.


D. y0 =

2x3

1
.
ln 10

D. Khối tứ diện đều.

log √a

D.

1
.
5

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.


2.

C
D

4.

B

5. A

6.

B

7. A

8.

B

9. A

10.

C

11. A

12.


C

13.

C

15. A

14.

D

16.

D

17.

D

18.

19.

D

20.

D


22.

D

23. A

24.

D

26. A

27. A

21.

C

28.

D

30.

29. A

C

32.


B

D

31.

B

33.

B

34. A

35.

D

36. A

37.

D

39.

D

38.


B

40. A

41. A

42. A

43.

44.

D

48.
50.

45. A

C

46.

D

C
B

1


47.

B

49.

B



×