Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg 1 (523)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.49 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. 0, 8.

D. −7, 2.

Câu 2. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. 1.
C. .
D. .
2
2

2
x
Câu 3. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?


A. 63.
B. 62.
C. 64.
D. Vô số.
Câu 4. Tính thể tích khối lập phương biết tổng diện tích tất
√ cả các mặt bằng 18.
A. 8.
B. 9.
C. 3 3.
D. 27.
Câu 5. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 4.

D. 24.

Câu 6. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
A. β = a β .
a
Câu 7. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 4.

D. 3.
Câu 8. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
Câu 9. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.1, 03
A. m =
triệu.
B. m =
triệu.
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 10. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:

A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 11. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; 6, 5].

D. (4; +∞).

Câu 12. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (0; −2).

D. (−1; −7).

−2x2

Câu 13. [2-c] Giá trị lớn nhất của hàm số y = xe
1
2
A. 3 .
B. 3 .
2e
e

trên đoạn [1; 2] là
1

C. 2 .
e

D.

Câu 14. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.

1
√ .
2 e

Trang 1/4 Mã đề 1


Câu 15. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. −∞.

B. 0.

C. 1.
!2x−1

3
3


5
5
B. (+∞; −∞).

Câu 16. Tập các số x thỏa mãn
A. [3; +∞).

x+1
bằng
x→−∞ 6x − 2
1
A. 1.
B. .
3
2
1−n
bằng?
Câu 18. [1] Tính lim 2
2n + 1
1
A. 0.
B. − .
2

un
bằng
vn
D. +∞.


!2−x

C. [1; +∞).

D. (−∞; 1].

Câu 17. Tính lim

C.

1
.
2

D.

1
.
6

C.

1
.
3

D.

1
.

2

! x3 −3mx2 +m
1
Câu 19. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ (0; +∞).
D. m ∈ R.
d = 30◦ , biết S BC là tam giác đều
Câu 20. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.

26
13
16
9

Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Câu 22. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
B. .
C. 1.
D.
.
A. .
2
2
2
Câu 23. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. −4.

D. 4.
Câu 24. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 13 năm.
Z 2
ln(x + 1)
Câu 25. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 3.
D. 1.
Câu 26. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. − < m < 0.
C. m ≤ 0.
D. m > − .
4
4
Câu 27. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Trang 2/4 Mã đề 1


Câu 28. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
0 0 0 0
0
Câu 29.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.

2
7
3
2
1

Câu 30. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).

D. D = R \ {1}.

Câu 31. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 0.
D. 1.
x−1
Câu 32. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
C. 2 2.
D. 6.
A. 2.

B. 2 3.
Câu 33. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 34. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. −3.

C. 6.

D. 3.

Câu 35. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.

e
Câu 36.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
A. 2e + 1.

B. 3.

C. 2e.

D.


!
1
1
1
Câu 37. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. +∞.
C. .
D. .
2
2
Câu 38. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 15
a3 5
a3 15
A.
.
B.
.
C.
.

D.
.
3
25
25
5
Câu 39. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C. 2a 6.
D.
A. a 3.
.
2
Câu 40. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 41. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Ba mặt.

D. Bốn mặt.

Trang 3/4 Mã đề 1


Câu 42. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
1
Câu 43. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
d = 120◦ .
Câu 44. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 3a.
B. 2a.
C.
2
5
Câu 45. Tính lim
n+3
A. 1.
B. 3.
C. 0.

D. 2.
Câu 46. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
10
20
20
C50
.(3)10
C50
.(3)40
C50
.(3)30
C50
.(3)20
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 47. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng

3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+1
c+2
c+2
x2 − 5x + 6
Câu 48. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.
C. 1.
D. −1.
Câu 49. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.
Câu 50. [2] Tổng các nghiệm của phương trình 3
A. 5.
B. 3.


C. 8.

D. 10.

x2 −4x+5

= 9 là
C. 4.

D. 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

D

3.

B


4.

5.

B

6. A

7.

D
C

12.
14. A

C

13.

C
B

17.

C

18.

B


19. A

20.

B

21. A

22.

C

23. A

24.

C

25. A
D

26.

D

11.
15.

16.


C

9.

C

10.

D

D

27. A

28. A

29.

C

30. A

31.

C

32.

B


33.

B
B

34.

C

35.

36.

C

37. A

38.

39.

B

40.
42.
44.

D
B


41.

D

43.

D

45.

C

46.

D

47.

48.

D

49.

50.

C

1


B

C
D
C



×