Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn tập toán thptqg 1 (540)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115.73 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
6
15
9
12 + 22 + · · · + n2
n3
B. +∞.

Câu 2. [3-1133d] Tính lim
A. 0.
Câu 3. Tính lim



C.

1
.
3

D.

2
.
3

cos n + sin n
n2 + 1
B. −∞.

C. +∞.
D. 1.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 4. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm

phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. [2; +∞).
A. 0.

Câu 5. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S√H ⊥ (ABCD), S A = a √
5. Thể tích khối chóp S .ABCD là
3
3
2a 3
4a3
2a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 6. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √

Khoảng cách từ C đến AC√0 bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
7
3
Câu 7. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.

B. 1.
C. 3.
D. 2.
3
Câu 8. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.

C. 6.

D. 12.
8
Câu 9. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 81.
D. 96.
Câu 10. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
B. √
.
C. √
.

D. √
.
2
2
2
2
2
a +b
2 a +b
a +b
a2 + b2
Câu 11. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Trang 1/4 Mã đề 1


Câu 12. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 13. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.

Câu 14. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Câu 15. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 9 mặt.

D. 6 mặt.

d = 300 .
Câu 16. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.


3


a
3
3a3 3
.
B. V = 6a3 .
C. V = 3a3 3.
D. V =
.
A. V =
2
2
Câu 17. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
24
36
12
6
d = 120◦ .
Câu 18. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C.
.
D. 2a.
2

Câu 19. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. V = 2a3 .
C. 2a3 2.

D. V = a3 2.
3

Câu 20. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. 3.
C. .
D. −3.
3
3
5
Câu 21. Tính lim
n+3
A. 1.
B. 0.
C. 2.
D. 3.
Câu 22. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 23. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng




2a 3
a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
2
3
Trang 2/4 Mã đề 1


Câu 24. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 25. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 1.
D. 3.
2
2
Câu 26.

! nào sau đây sai?
Z Mệnh đề
0

A.

f (x)dx = f (x).

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 27. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
!x
1
1−x
Câu 28. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. 1 − log2 3.
C. − log2 3.

D. − log3 2.
Câu 29. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.

C. 8.

D. 6.

Câu 30. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.

C. 4.

D. 2.

Câu 31. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.

C. 10 cạnh.

D. 11 cạnh.

Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là

3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
mx − 4
Câu 33. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.

Câu 34. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 35. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.

C. 0.

D. 1.

Câu 36. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.

D. Không tồn tại.
x+3
nghịch biến trên khoảng
Câu 37. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Trang 3/4 Mã đề 1



Câu 38. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
2

Câu 39. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 2 − log2 3.

D. 1 − log3 2.

Câu 40. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. −1.

D. 1.

Câu 41. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!

un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 42. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
6
2
log7 16
Câu 43. [1-c] Giá trị của biểu thức
bằng

log7 15 − log7 15
30
A. −4.
B. 4.
C. 2.
D. −2.
Câu 44. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 30.
!
1
1
1
+ ··· +
Câu 45. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
A. +∞.
B. 2.
C. .
2
Câu 46.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.

Z
B.

[ f (x) + g(x)]dx =

f (x)dx +

D.

5
.
2

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

D. 20.

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 47. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
24
12
6
x−1
Câu 48. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Trang 4/4 Mã đề 1



A.


6.


C. 2 2.


B. 2 3.

D. 2.

Câu 49. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
Câu 50. [1] Đạo hàm của làm số y = log x là
1
ln 10
A.
.
B. y0 =
.
10 ln x
x

C. y0 =

1
.

x ln 10

1
D. y0 = .
x

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

3. A

C

4.

D

5.

6.

D


7.

C

8.
10.
14.

11.

B

16. A

17.

C
C

19.

20.

C

21.

22.

C


23.

24.

C

25. A
D

D

29.

30.

C

31.

C
D
B

42.

C

C


37.

C

39.

C

41.

C

43. A
D

45.

46.

D

47.

50.

D

35.

44.

48.

C

33.

38. A
40.

C
D

C
D

B

27.

28.

36.

D
C

C

34.


B

15.

18.

32.

C

13.

C

26.

D

9.
D

12.

C

49.

B
C


1

B
C
D



×