Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg 1 (193)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (118.38 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 2. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m > .
D. m ≥ .
A. m ≤ .
4
4
4
4
Câu 3. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
C. y = log 41 x.


D. y = log √2 x.
Câu 4. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 5
a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
25
25
5
1

Câu 5. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.
D. D = R \ {1}.
x+1
bằng

Câu 6. Tính lim
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. 1.
D. .
4
3
0 0 0
Câu 7. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
2
6
3

Câu 8. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD



3
3
3
4a
4a 3
2a3 3
2a
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 9. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
C. 30.
D. 12.

q
Câu 10. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
x−1
Câu 11. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2.
B. 6.
C. 2 3.
D. 2 2.
Câu 12. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.
Câu 13. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.

C. Hình chóp.

D. Hình tam giác.
Trang 1/4 Mã đề 1




x2 + 3x + 5
x→−∞
4x − 1
B. 1.

Câu 14. Tính giới hạn lim

1
.
4
Câu 15. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
A. 0.

1
D. − .
4

C.


D. Vô nghiệm.

Câu 16. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
D. T = 4 + .
A. T = e + 1.
B. T = e + 3.
C. T = e + .
e
e
Câu 17. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
B. − ; +∞ .
C.
; +∞ .
D. −∞; − .
A. −∞; .
2
2
2
2
Câu 18. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?

A. 3.
B. 8.
C. 4.
D. 6.
ln2 x
m
Câu 19. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 22.
D. S = 24.
Câu 20. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 21. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.

C. log2 13.
D. log2 2020.
Câu 22. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 20.

Câu 23. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
2
x −9
Câu 24. Tính lim
x→3 x − 3
A. +∞.
B. 3.
C. 6.
cos n + sin n
Câu 25. Tính lim
n2 + 1
A. −∞.
B. 0.
C. 1.

D. 30.
= (x2 − 3)e x trên đoạn [0; 2].
D. e2016 .


D. −3.
D. +∞.

Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16
Câu 27. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

1
A. − .
B. − 2 .
C. −e.
D. − .
e
e
2e
Trang 2/4 Mã đề 1


Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2

Câu 29. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 5}.
Câu 30. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = 1.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = ln 10.

1
Câu 31. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 32. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.

120.(1, 12)3
100.(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
(1, 01)3
100.1, 03
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 33. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
Câu 34.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2

a 2
A.
.
B.
.
12
2
2n2 − 1
Câu 35. Tính lim 6
3n + n4
A. 0.
B. 1.


a3 2
C.
.
6


a3 2
D.
.
4

2
.
3
 π π
Câu 36. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;

2 2
A. −1.
B. 1.
C. 3.
D. 7.
C. 2.

D.

Câu 37. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.

D. x = −5.

Câu 38. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.

D. 8.

C. 12.

Câu 39. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Tứ diện đều.

D. Nhị thập diện đều.


Câu 40. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.
e
Câu 41. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
A. 2e + 1.

B. 3.

C. 2e.

D.

Trang 3/4 Mã đề 1


Câu 42. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.


D. Khối 20 mặt đều.

Câu 43. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
2

Câu 44. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 4.

D. 5.
log 2x
Câu 45. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
2mx + 1
1
Câu 46. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.

B. 1.
C. −2.
D. 0.
[ = 60◦ , S A ⊥ (ABCD).
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
.
D.
12
6
4
Câu 48. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. −2.

C. .
D. − .
2
2
x−3 x−2
x−3
x−2
Câu 49. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
8
Câu 50. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 96.
D. 81.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D


2. A

3.

D

4.

B

6.

B

8.

B

5.

B

7. A
9.

C

10. A


11.

C

12.

13.
17.

14.

D

15.

16.

C
B

20.

21.

C

22.

23.


C

24.

B

26.

27.

D

28. A

29.

D

30.

31.

C

33.

B
D
C
B

D
C

34. A

35. A

36.

B
D

38.

C

39.

B

40.

41.

B

42.

43. A


B
D

44.

45.

D

46.

47.

D

48.

49.

B

32.
D

37.

D

18. A


19. A

25.

B

50.

B

1

C
D
B
D



×