Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg (994)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.89 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.

Câu 2. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 2e.


e

D. 3.

 π
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
C.
A. 1.
B.
e .
e .
2
2
Câu 4. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.

D.
1
3|x−1|

1 π3
e .

2

= 3m − 2 có nghiệm duy

C. 2.

D. 3.
!
3n + 2
2
Câu 5. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 5.
B. 2.
C. 3.
D. 4.
Câu 6. √
Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .


−3
C. 0−1 .
D.
−1.
1 − xy
Câu 7. [12210d] Xét các số thực dương x, y thỏa mãn log3

= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 − 19
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 8. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 9. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Không thay đổi.
Câu 10. Khối đa diện đều loại {3; 5} có số mặt

A. 8.
B. 30.

C. 12.

D. 20.

Câu 11. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 12.

D. 20.

Câu 12. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. .
C. 2.
2

1
D. − .
2
Trang 1/4 Mã đề 1


x+1
bằng

6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3
Câu 14. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.
Câu 13. Tính lim

x→−∞

Câu 15. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.

C. 4.

D. 5.
x+2
đồng biến trên khoảng

Câu 16. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 6
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
48
24
16

Câu 18. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 64cm3 .
D. 72cm3 .

Câu 19. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √

3
3
3
4a
2a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3

3
Câu 20. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 5}.
Câu 21. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 22. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 23. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 24. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1

8
1
8
A. .
B. .
C. .
D. .
3
9
9
3
1
Câu 25. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.
Câu 26. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3

A. 2.
B.
.
C. 3.
D. 1.
3
Trang 2/4 Mã đề 1


Câu 27. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 23.
D. 22.
Câu 28. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
.
B.
.
C.
.
A.
c+3
c+2
c+2
Câu 29. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1

1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2
Câu 30. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
n2 − 3n
.
B.
u
=
.
C. un =
.
A. un =
n
2
2
n
5n − 3n
5n + n2


D.

3b + 3ac
.
c+1

D. m =

1 − 2e
.
4 − 2e

D. un =

n2 + n + 1
.
(n + 1)2

Câu 31. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Câu 32. Tính lim
x→5
2
A. − .
5


x2 − 12x + 35
25 − 5x
2
B. .
5

C. +∞.

D. −∞.

Câu 33. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 34. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
B. a .
C.
.
D.
.
A.

3
6
2
! x3 −3mx2 +m
1
Câu 35. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
Câu 36. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
!4x
!2−x
2
3
Câu 37. Tập các số x thỏa mãn


3
2

"
!
"
!
#
#
2
2
2
2
A.
; +∞ .
B. − ; +∞ .
C. −∞; .
D. −∞; .
5
3
3
5
Câu 38. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Trang 3/4 Mã đề 1


Câu 39. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
Câu 40. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
5
8

; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
x+2
Câu 41. Tính lim
bằng?
x→2
x
A. 3.
B. 1.
C. 2.
D. 0.
Câu 42.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 43. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.

C. 12.

D. 10.
tan x + m
Câu 44. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
Câu 45. Dãy
!n số nào sau đây có giới
!n hạn là 0?

!n
!n
4
1
5
5
B.
.
C.
.
D.
.
A. − .
3
e
3
3
x+1
Câu 46. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 3.
C. .
D. 1.
A. .
4
3
Câu 47. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các

mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).
d = 90◦ , ABC
d
Câu 48. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là


a3 2
2
A. 2a 2.
B.
.
24
Câu 49. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Cả ba mệnh đề.

= 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).

a3 3
C.

.
12


a3 3
D.
.
24

C. Khối 20 mặt đều.

D. Khối 12 mặt đều.

Câu 50. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 + 4 2.
B. −3 − 4 2.
C. −3 + 4 2.
3

D. (I) và (III).



2


D. 3 − 4 2.


- - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

1. A
3.

4.

B

D
B

5.

D

6.

7.

D

8.


D

10.

D

9. A
D

11.

12. A

13.

B

14.

15.

B

16.

17.

B


18.

21.

C

22. A

23.

C

24.

B
D

28.

29. A
D

32.

33.

D

34.


35.

C

36.

D
B
B
C
B
D
B

38.

B

39.

C

40.

41.

C

42. A


43. A

C
B

44.

45.
49.

B

30.

31.

47.

D

26. A

27.

37.

C

20.


19. A

25.

C

C

46. A

C
B

48.
D

50.

1

B
C



×