Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
!2x−1
!2−x
3
3
Câu 2. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. [3; +∞).
C. (+∞; −∞).
D. (−∞; 1].
Câu 3. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4 − 2e
4 − 2e
4e + 2
Câu 4.
Z Các khẳng định nào sauZđây là sai?
A.
Z
C.
f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).
f (t)dt = F(t) + C. B.
Z
D. m =
k f (x)dx = k
Z
D.
1 + 2e
.
4e + 2
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 5. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim f (x) = f (a).
x→a
x→a
x→a
D. f (x) có giới hạn hữu hạn khi x → a.
Câu 6. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 27 m.
D. 387 m.
Câu 7. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 8. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1
3
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Câu 9. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 7
11a
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4
Trang 1/4 Mã đề 1
Câu 10. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 11. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.
D. 0.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 12. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
.
D. T = 2017.
A. T = 2016.
B. T = 1008.
C. T =
2017
Câu 13. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.
D. 6.
Câu 14. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 15. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 16. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .
C. − .
D. − 2 .
e
2e
e
2x + 1
Câu 17. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. 2.
D. −1.
2
0 0 0 0
0
Câu 18.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Câu 19. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
C. 30.
D. 12.
√
Câu 20. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 4.
D. 6.
Câu 21. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Câu 22. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
C. m = ± 3.
D. m = ±1.
A. m = ±3.
B. m = ± 2.
Câu 23. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 24. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 2.
C. 0.
D. 1.
Trang 2/4 Mã đề 1
Câu 25. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. 6.
D. .
A. 9.
B. .
2
2
Câu 26. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 0, 8.
D. 72.
!
x+1
Câu 27. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 28. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = 1.
D. lim un = .
2
Câu 29. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 30. Hàm số nào sau đây khơng có cực trị
1
B. y = x4 − 2x + 1.
A. y = x + .
x
C. y =
x−2
.
2x + 1
D. y = x3 − 3x.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 31. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 32. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.
D. Hình tam giác.
Câu 33. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −12.
D. −9.
Câu 34. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. Vơ nghiệm.
q
2
Câu 35. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 36. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Trang 3/4 Mã đề 1
2−n
Câu 37. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.
C. −1.
D. 0.
Câu 38. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.
C. 8.
D. 10.
Câu 39. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 27.
C. 3 3.
D. 9.
Câu 40. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 41. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 9 cạnh.
D. 11 cạnh.
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
6
12
4
12
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 43. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. −1.
C. .
D. 1.
2
Câu 44. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 13 năm.
2
Câu 45. Tính
√ (1 + 2i)z = 3 + 4i. √
√4 mô đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 5.
√3
Câu 46. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
Câu 47. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
C.
.
B. a 6.
.
D.
.
6
2
3
2n − 3
Câu 48. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 49. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 50. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
18
15
9
- - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
3.
C
4.
5.
C
6.
7.
B
9.
B
13.
10.
B
12.
B
14.
D
15. A
C
18.
19.
C
20.
B
22.
23.
D
24.
25.
D
26. A
27.
D
28.
29.
D
16.
17.
21.
C
8. A
C
11.
D
B
C
D
C
B
C
D
30.
31.
D
C
32.
D
33.
C
34.
B
35.
C
36.
B
37.
C
38.
39.
C
40.
D
42.
D
41.
B
43.
D
C
44. A
45. A
46.
B
47. A
48.
B
49.
B
1