Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
8
Câu 1. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 96.
D. 81.
1
Câu 2. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; +∞).
log 2x
là
Câu 3. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 4. √
Biểu thức nào sau đây khơng có nghĩa
√
−3
A. (− 2)0 .
B. 0−1 .
C.
−1.
D. (−1)−1 .
√
3
4
Câu 5. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
2
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
Câu 6. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (I) sai.
C. Câu (II) sai.
D. Khơng có câu nào
sai.
Câu 7. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√M + m
√ của hàm số. Khi đó tổng
B. 8 3.
C. 16.
D. 8 2.
A. 7 3.
Câu 8. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
a3 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
4
12
6
12
Câu 9. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
C. lim f (x) = f (a).
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
√
Câu 10. Xác định phần ảo của số √
phức z = ( 2 + 3i)2
√
A. −7.
B. −6 2.
C. 7.
D. 6 2.
Câu 11. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C.
.
D.
.
√
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
d = 30◦ , biết S BC là tam giác đều
Câu 12. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
26
9
16
Trang 1/4 Mã đề 1
Câu 13.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 27.
D. 8.
Câu 14. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.
D. 23.
Câu 15. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C. 5.
D.
.
2
2
Câu 16. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 17. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Câu 18. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 9 cạnh.
D. 10 cạnh.
Câu 19. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
C. 1.
D. 5.
A. 2.
B. 3.
Câu 20. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 21. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.
C. 8.
D. 6.
Câu 22. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −9.
D. −15.
m
ln2 x
Câu 23. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 135.
D. S = 22.
[ = 60◦ , S A ⊥ (ABCD).
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là
√
3
3
√
a 2
a3 3
a 2
3
A.
D.
.
B.
.
C. a 3.
.
12
4
6
Câu 25. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C.
.
D. 18.
2
Câu 26. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 30.
D. 12.
Câu 27. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Trang 2/4 Mã đề 1
Câu 28. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 29. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. Cả ba mệnh đề.
C. (I) và (II).
Câu 30. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.
!2x−1
!2−x
3
3
≤
là
Câu 31. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (+∞; −∞).
C. (−∞; 1].
D. (II) và (III).
D. Hình lăng trụ.
D. [3; +∞).
Câu 32. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.
D. ln 12.
Câu 33. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 34. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 35. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 36. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
D. −1 + 2 sin 2x.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 37. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
√
a3 2
a3 3
a3 3
2
A. 2a 2.
B.
.
C.
.
D.
.
24
24
12
Câu 38. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Câu 39. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
Trang 3/4 Mã đề 1
Câu 40. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
1
3|x−1|
= 3m − 2 có nghiệm duy
B. 2.
C. 3.
D. 4.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 41. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 42. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 43. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 44. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
D. Khối 20 mặt đều.
Câu 45. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Câu 46. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
2
3
Câu 47. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 0.
D. V = S h.
D. 2.
Câu 48. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B. 2a 6.
C. a 6.
D.
.
A. a 3.
2
x+1
Câu 49. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 1.
D. 3.
3
4
Câu 50. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3. A
D
5.
2.
B
4.
B
7.
C
8.
9.
C
10.
11. A
12. A
13. A
14. A
15.
D
19. A
21.
D
D
20.
D
B
26.
B
D
28.
C
C
30. A
31. A
32.
33.
D
35.
37.
18.
24.
D
29.
D
22. A
B
25.
27.
B
16. A
B
17.
23.
D
6.
34.
C
B
39.
B
36.
D
38.
D
40. A
C
41.
C
D
42.
C
44.
43. A
D
45.
C
46.
47.
C
48.
C
50.
C
49.
B
1
B