Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 2. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 3. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 15
a3 5
a3
A.
.
B.
.
C.
.
D.
.
25
5
25
3
2−n
bằng
Câu 4. Giá trị của giới hạn lim
n+1
A. 1.
B. 0.
C. −1.
D. 2.
Câu 5. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 6. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C√0 D) bằng
√
√
√
a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
Câu 7. Dãy số nào có giới hạn bằng 0?
!n
!n
−2
6
n3 − 3n
2
.
B. un = n − 4n.
C. un =
.
D. un =
.
A. un =
n+1
3
5
Câu 8. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 7 mặt.
D. 9 mặt.
Câu 9. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
4a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
√3
4
Câu 11. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 12. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
9
5
A.
.
B. −
.
C.
.
D. − .
100
100
25
16
Trang 1/4 Mã đề 1
Câu 13. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 7, 2.
D. 72.
x+1
Câu 14. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. 3.
D. .
4
3
9x
Câu 15. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
B. 2.
C. 1.
D. −1.
A. .
2
√
√
Câu 16. Phần thực và √
phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 17. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 5.
C. 25.
D. 5.
5
Câu 18. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a3 3
a3 3
2a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 19. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
√
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
sai.
Câu 20. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
C. Câu (III) sai.
D. Câu (II) sai.
C. 4.
D. 8.
Câu 21. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4
4
0 0
0 0 0
Câu 22. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
3
2
2
Câu 23. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 8.
D. 6.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3
3
4
Câu 24. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a, S D =
Trang 2/4 Mã đề 1
x3 − 1
Câu 25. Tính lim
x→1 x − 1
A. −∞.
B. 3.
C. +∞.
D. 0.
ln x p 2
1
Câu 26. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
B. .
C. .
D. .
A. .
9
3
3
9
Câu 27. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.
2
Câu 28. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.
x+2
Câu 29. Tính lim
bằng?
x→2
x
A. 1.
B. 3.
C. 2.
Câu 30. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
Câu 31. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 30.
D. 5.
D. Năm cạnh.
D. 0.
D. {5; 3}.
C. 20.
D. 8.
x = 1 + 3t
Câu 32. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x = −1 + 2t
x = 1 + 7t
x = −1 + 2t
x = 1 + 3t
A.
.
C.
y = −10 + 11t . B.
y=1+t
y = −10 + 11t . D.
y = 1 + 4t .
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
Câu 33. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
A. |z| = 17.
1
Câu 34. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 35. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 36. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 30.
D. 20.
Câu 37.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
xα+1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x
Z
C.
0dx = C, C là hằng số.
D.
dx = x + C, C là hằng số.
Câu 38. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
2
2
2
3
−1
x y z−1
x−2 y−2 z−3
C. = =
.
D.
=
=
.
1 1
1
2
3
4
Trang 3/4 Mã đề 1
Câu 39. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 40. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 3.
D. 5.
un
Câu 41. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 42. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 3.
B.
.
C.
.
D. a 2.
3
2
1
Câu 43. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).
D. D = (1; +∞).
Câu 44. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.
D. 8.
C. 10.
Câu 45. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 12 m.
D. 24 m.
Câu 46. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
2
Câu 47. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
C. 3 .
A. 3 .
B. √ .
2e
e
2 e
D.
1
.
e2
Câu 48. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.
Câu 49. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 135.
D. S = 22.
Câu 50. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2. A
C
3. A
5.
C
6. A
7.
C
8.
9.
C
4.
D
10.
B
11.
D
13. A
12.
B
14.
B
15.
C
16.
17.
C
18.
19. A
C
20.
21.
B
22.
23.
B
24. A
25.
B
26. A
27.
B
28.
D
C
B
D
B
D
29.
C
30.
31.
C
32.
33.
C
34.
D
36.
D
35. A
37.
B
38.
39.
C
40. A
41.
C
42.
43.
45.
47.
D
C
C
C
44.
B
D
49. A
1
D
46.
C
48.
C
50.
C