Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
√
Câu 1. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 63.
D. 62.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 2. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. Vơ nghiệm.
C. 3.
D. 1.
Câu 3. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log π4 x.
A. y = log √2 x.
D. y = loga x trong đó a =
C. y = log 41 x.
√
3 − 2.
Câu 4. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 5. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 6. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 2.
B. 1.
C.
.
2
√
√
Câu 7.√Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6−x
√
A. 2 3.
B. 3 2.
C. 3.
D.
1
.
2
D. 2 +
√
3.
Câu 8. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 9. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − .
A. − .
B. − 2 .
2e
e
e
D. −e.
3
Câu 10. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.
D. e2 .
Câu 11. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 12. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 5 mặt.
Câu 13. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. β = a β .
D. aαβ = (aα )β .
a
Trang 1/4 Mã đề 1
Câu 14. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
C. |z| = 2 5.
A. |z| = 5.
B. |z| = 5.
Câu 15. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
log7 16
Câu 16. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −2.
C. 4.
D. |z| =
√4
5.
D. 3.
D. −4.
Câu 17. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
4a3
2a3 3
2a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
2n + 1
Câu 18. Tính giới hạn lim
3n + 2
2
1
3
A. 0.
B. .
C. .
D. .
3
2
2
Câu 19. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
B.
.
C. 2 13.
D. 26.
A. 2.
13
√
Câu 20. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
2
3
Câu 21. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−3; 1].
D. [−1; 3].
Câu 22. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Câu 23. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
B. 0 < m ≤ 1.
1
= m − 2 có nghiệm
3|x−2|
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 24. [3-12214d] Với giá trị nào của m thì phương trình
A. 0 ≤ m ≤ 1.
D. Khối bát diện đều.
Câu 25. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 1134 m.
D. 2400 m.
1 + 2 + ··· + n
Câu 26. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 0.
2
1
Câu 27. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = 4.
Trang 2/4 Mã đề 1
Câu 28. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 13.
D. 2020.
Câu 29. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.
C. +∞.
D. 1.
Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
2
2
2
2
2
a +b
2 a +b
a +b
a + b2
Câu 31. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 10.
Câu 32. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Câu 33. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 6.
D. 8.
Câu 34. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
6
18
x−1
Câu 35. [1] Tập xác định của hàm số y = 2 là
A. D = (0; +∞).
B. D = R \ {1}.
C. D = R \ {0}.
D. D = R.
n−1
Câu 36. Tính lim 2
n +2
A. 0.
B. 1.
C. 2.
D. 3.
Câu 37. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 38. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
.
C. P = 2i.
D. P =
.
A. P = 2.
B. P =
2
2
1
Câu 39. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
! x3 −3mx2 +m
1
Câu 40. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
4x + 1
Câu 41. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. 2.
D. −1.
2
2n − 1
Câu 42. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 2.
D. 0.
3
Trang 3/4 Mã đề 1
d = 60◦ . Đường chéo
Câu 43. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
2a3 6
4a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 44. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 6.
D. V = 3.
Câu 45. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Câu 46. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 11 năm.
D. 12 năm.
9x
Câu 47. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
B. 1.
C. 2.
D. −1.
A. .
2
Câu 48. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4
4
Câu 49. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.
D. Hai mặt.
2
2
Câu 50. [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần
√ lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
D
3. A
4. A
5. A
6. A
7.
D
8.
B
9. A
C
10. A
11.
C
12.
13.
C
14.
D
15. A
16.
D
17. A
18.
19.
B
21.
23.
C
B
25. A
C
B
20.
D
22.
D
24.
D
26.
C
27.
B
28.
29.
B
30.
C
C
B
31.
C
32.
33.
C
35.
D
36. A
37.
D
38. A
39.
B
41.
B
40.
C
42.
44.
D
B
46.
48.
50.
43.
D
45. A
D
47.
B
49. A
D
1
B