Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c2 (193)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.57 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
2
3
2
7
Câu 2. Cho
− 2i|. Tính |z|.
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 √
A. |z| = 17.


B. |z| = 10.
C. |z| = 10.
x−2
Câu 3. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
C. 1.
3
Câu 4. Cho
Z hai hàm y Z=
A. Nếu
f (x)dx =
Z
Z
0
B. Nếu
f (x)dx =
Z
Z
C. Nếu
f (x)dx =

D. |z| = 17.

D. 2.

f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g(x)dx thì f (x) , g(x), ∀x ∈ R.

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.


Câu 5. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng



3a 38
a 38
3a 58
3a
.
B.
.
C.
.
D.
.
A.
29

29
29
29
mx − 4
Câu 6. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 67.
D. 34.
Câu 7. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n3 lần.
D. n2 lần.
3a
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là √
trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a
a 2
a
2a
A. .
B.
.
C. .

D.
.
4
3
3
3
Câu 9. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.

C. 4.

D. 10.

Câu 10. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 11.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z

f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Trang 1/4 Mã đề 1


Câu 12. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình chóp.
Câu 13. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3
!

1
1
1
Câu 14. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 1.
2
Câu 15. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 4 mặt.
Câu 16. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.

D. Hình lập phương.
D. V = 3S h.

D. 0.
D. 3 mặt.
D. 2.

Câu 17. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
4
32
16
Câu 18. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 5.
B. 34.
C.
.
D. 68.
17
x−1
Câu 19. [1] Tập xác định của hàm số y = 2 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R \ {1}.
D. D = R.
log(mx)
Câu 20. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
2−n
bằng
Câu 21. Giá trị của giới hạn lim
n+1
A. −1.
B. 0.
C. 1.
D. 2.

log7 16
Câu 22. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −2.
C. 2.
D. −4.
3
x −1
Câu 23. Tính lim
x→1 x − 1
A. +∞.
B. 3.
C. −∞.
D. 0.
Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



c a2 + b2
a b2 + c2
b a2 + c2
abc b2 + c2
A. √
.

B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
q
2
Câu 25. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 26. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2

2
Trang 2/4 Mã đề 1


Câu 27. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Câu 28. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối


√ chóp S .ABCD là
3
3
3

a
a
a
5
15
6
.
C.
.
D.

.
A. a3 6.
B.
3
3
3
Câu 29. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 30.

D. 8.
 π π
Câu 30. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
Câu 31. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = 0.

D. m = −1.

2

Câu 32. [3] Biết rằng giá trị lớn nhất của hàm số y =

số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.

m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 135.

Câu 33. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3
a3 5
a3 15
a3 15
.
B.
.
C.
.
D.
.
A.

5
3
25
25
Câu 34. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.

C. 12.

D. 20.

Câu 35. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. − .
C. .
D. 2.
2
2
9t
Câu 36. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 1.
D. 0.

Câu 37. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 3.

C. 2e.

D.

2
.
e

Câu 38. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 39. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.
Câu 40. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 =
.
ln 2

C. 24.


D. 144.

C. y0 = 2 x . ln 2.

D. y0 =

1
2 x . ln

x

.

Trang 3/4 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. −8.

Câu 41. [1-c] Giá trị biểu thức
A. 3.

D. 4.

Câu 42. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).

B. (0; −2).
C. (2; 2).

D. (−1; −7).
[ = 60◦ , S O
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
19
17
Câu 44. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.

B.
.
C.
.
D. a3 .
A.
12
24
6
Câu 45. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4e + 2
4 − 2e
Câu 46. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.


C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 47. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
C. 2.
D. 3.
A. 1.
B.
3
Câu 48. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.

.
D.
.
c+1
c+3
c+2
c+2
ln x p 2
1
Câu 49. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
3
9
9
x
Câu 50.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1

3
A.
.
B. .
C. .
D. 1.
2
2
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B
C

3.

D

5.
7.

C


9. A

2.

C

4.

C

6.

D

8.

D

10.

D

11.

C

12. A

13.


C

14.

16.

C

17. A

18.

C

19.

20.

B
D

23.

24.

B

25.


26.

B

27.

28.

D
B

34.

C

C

29.

B

31.

B

37.
D

40.


D

C
B
C

48.

D

50.

D

B
D

39.

44. A
46.

D

35. A

B

38.
42.


B

33.

32. A
36.

D

21. A

22.

30.

C

41.

C

43.

C

45.

C


47.

C

49.

1

D



×