Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c2 (921)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.23 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

!
1
1
1
Câu 1. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. .
D. +∞.
2
2
Câu 2. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 3. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không


rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 4. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một
góc bằng 60◦ . Thể tích√khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
4
8
12
4
tan x + m
Câu 5. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =

nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).




Câu 6. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. m ≥ 0.
4
4
4
1
Câu 7. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
y
0
A. xy = e + 1.

B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
2

2

Câu 8. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d
2
2
−1
đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Câu 9. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 21.
D. 22.
Câu 10. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 41 x.

B. y = log √2 x.
C. y = log π4 x.

D. y = loga x trong đó a =


3 − 2.

Câu 11. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 12.
D. ln 14.
1
Câu 12. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. 2.
D. −1.
Trang 1/4 Mã đề 1


Câu 13. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. (1; 2).
Câu 14.
Z Các khẳng định
Z nào sau đây là sai?

A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Câu 15. [1] Biết log6
A. 108.



a = 2 thì log6 a bằng
B. 4.

Z
B.
Z
D.

D. [1; 2].

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.


f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

C. 36.

D. 6.

Câu 16. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
1
Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 3.
D. 4.
x+1
bằng
Câu 18. Tính lim
x→−∞ 6x − 2
1
1

1
A. 1.
B. .
C. .
D. .
2
6
3
p
ln x
1
Câu 19. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
3
9
9
Câu 20. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.

C. 7, 2.
x−2
Câu 21. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
C. 2.
3
4x + 1
Câu 22. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.
C. 4.
Câu 23. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. 72.

D. 1.

D. 2.
D. {4; 3}.

Câu 24. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ

0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
2
6
3
8
Câu 25. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 96.
D. 82.
2−n
Câu 26. Giá trị của giới hạn lim
bằng
n+1
A. 1.

B. 0.
C. 2.
D. −1.
Câu 27. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
Trang 2/4 Mã đề 1


Câu 28. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).

D. (−1; −7).

Câu 29. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
.
C. .
D. .
A. a.
B.

2
2
3
Z 1
Câu 30. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. 1.
D. .
4
2
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. 2
.
D. √
.
.
C. √
A. √
2

a +b
a2 + b2
2 a2 + b2
a2 + b2
A. 0.

B.

Câu 32. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.
Câu 33. [2] Tổng các nghiệm của phương trình 3
A. 7.
B. 5.

D. 12.

x2 −3x+8

= 92x−1 là
C. 6.

D. 8.

Câu 34. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

Câu 35. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
Câu 36. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim k = 0.
n
1
n

C. lim q = 0 (|q| > 1).
D. lim = 0.
n

Câu 37. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
Câu 38. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.

D. {4; 3}.
Câu 39. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Trang 3/4 Mã đề 1


Câu 40. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
A. β = a β .
a
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. −2 + 2 ln 2.
D. 1.
log(mx)
Câu 42. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.

D. m < 0 ∨ m > 4.
Câu 43. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.

D. 3.

Câu 44. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 3.

D. 0.
!
3n + 2
2
Câu 45. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.

2

2

sin x
Câu 46. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
2
x − 3x + 3
Câu 47. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 2.
C. x = 1.
D. x = 0.

Câu 48. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.
D. Không tồn tại.


Câu 49. Phần thực√và phần ảo của số √

phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 50. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 8 mặt.

D. 7 mặt.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
C

3.
5.

B


2.

B

4.

B

6. A

7.

D

8.

9.

D

10.

11.

D

12. A

13. A

15.

14.
B

17. A

C
B
B

16.

C

18.

C

19.

D

20.

21.

D

22.


23.

D

24. A

B
C

26.

25. A
27.

C

D

28. A

29. A

30.

31. A

32.

33. A


34.

35. A

36.

C

37. A

38.

C

39.
41.

D

45.
47.
49.

C
D

40. A

B


43.

D

42. A
44. A

C
B

46.

B

48.

C
D

50.

1

D
B




×