Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c2 (883)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.92 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
a 6
a3 3
2a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
4
12
2
9
Câu 2. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực


x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 3. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
x+1
Câu 4. Tính lim
bằng
x→+∞ 4x + 3
1
B. 3.
A. .
4
Câu 5. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.

C.

1
.
3

D. 1.


C. {4; 3}.

D. {5; 3}.

C. +∞.

D. 3.

Câu 6. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 1.

Câu 7. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.

2
2
7
3
Câu 8. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − 2 .
D. − .
A. −e.
B. − .
e
e
2e
Câu 9. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
Câu 10. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng




2a 3
a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
3
x+1
Câu 11. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
3
6
2
 π
Câu 12. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2



3 π6
1 π3
2 π4
A.
e .
B. 1.
C. e .
D.
e .
2
2
2
Câu 13. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
Trang 1/4 Mã đề 1


x−2
Câu 14. Tính lim
x→+∞ x + 3
2
B. 2.
C. 1.
D. −3.
A. − .

3
Câu 15. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 16. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 2.
D. m = ± 3.
p
ln x
1
Câu 17. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
3
9
9

Câu 18. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
2

Câu 19. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 2 − log2 3.

D. 1 − log3 2.

Câu 20. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; 0) và (1; +∞).
Câu 21. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −3.

D. −7.

Câu 22. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.

D. 12.


C. 10.

Câu 23. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 24. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 40 .(3)10
C 20 .(3)30
C 20 .(3)20
A. 50 50 .

B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 25. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 26. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.

C. 20.


D. 30.

Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
a b2 + c2
c a2 + b2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 2/4 Mã đề 1


[ = 60◦ , S O
Câu 28. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.

√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 29. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. a.
C. .
D.
.
3
2
2


Câu 30. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
36
6
18
6
!
!
!
4x
1
2

2016
Câu 31. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
Câu 32. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 10 cạnh.
D. 9 cạnh.
Câu 33. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 34. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.

B. {2}.
C. {5}.
D. {3}.
Câu 35. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.

D. 72.

Câu 36. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.

D. Năm mặt.

d = 30◦ , biết S BC là tam giác đều
Câu 37. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.

C.
.
D.
.
A.
16
13
9
26
x+2
Câu 38. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vơ số.
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
3
8a 3
4a 3
8a 3

a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
1
Câu 40. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 41. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là




a3 3
5a3 3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Trang 3/4 Mã đề 1


1
Câu 42. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.
Câu 43. Khối đa diện loại {3; 3} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
!
1
1
1
Câu 44. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
C. 1.
D. 0.
A. 2.
B. .
2
Câu 45. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
Câu 46. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (−1; −7).


D. (1; −3).

Câu 47. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).

D. (0; 2).

C. (−∞; 2).

Câu 48. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+1
c+3
c+2
1 − n2
Câu 49. [1] Tính lim 2
bằng?

2n + 1
1
1
1
B. 0.
C. .
D. − .
A. .
3
2
2
1
Câu 50. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A


3.

B

4. A

5.

D

6. A

7.

D

8.

D

10.

D

12.

D

9. A

11.

B
D

13.
15.

B
D

17.
19.

14.

C

16.

C
D

18.

C

20.

21. A


22.

23. A

24. A

25. A

26. A

C
D

27.

B

28. A

29.

B

30.

C

32.


C

34.

C

31.

C

33. A
35.

B

36. A

37.

B

38. A

39.

40.

C

41. A


42.

43. A

44.

45.

D
C

46. A

C

47. A
49.

C

48. A
D

50.

1

C




×