Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính lim
x→1
A. −∞.
x3 − 1
x−1
B. +∞.
C. 0.
D. 3.
Câu 2. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều.
D. Tứ diện đều.
Câu 3. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≥ .
D. m ≤ .
A. m > .
4
4
4
4
2
3
7n − 2n + 1
Câu 4. Tính lim 3
3n + 2n2 + 1
7
2
A. 1.
B. .
C. 0.
D. - .
3
3
Câu 5. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
C. 2e.
A. 2e + 1.
B. .
e
Z 1
Câu 6. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
D. 3.
0
1
1
.
C. .
D. 1.
2
4
Câu 7. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
A. 0.
B.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. Vô số.
D. 0.
Câu 8. [4] Xét hàm số f (t) =
Câu 9. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 10. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
x2
Câu 11. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 3 − log2 3.
D. 1 − log3 2.
Câu 12. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = a.
Câu 13.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
4
.
B.
.
A.
e
3
!n
1
C.
.
3
!n
5
D. − .
3
Câu 14. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 4.
D. 6.
Trang 1/4 Mã đề 1
Câu 15. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 16. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; 0) và (1; +∞).
Câu 17. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
C. .
D.
.
A. 1.
B. .
2
2
2
Câu 18. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
x+2
Câu 19. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 20.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
Câu 21. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 22. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
!x
1
1−x
là
Câu 23. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. log2 3.
B. − log3 2.
C. 1 − log2 3.
D. {4; 3}.
D. − log2 3.
Câu 24. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
√
√
4n2 + 1 − n + 2
Câu 25. Tính lim
bằng
2n − 3
3
A. 1.
B. 2.
C. +∞.
D. .
2
Câu 26. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 68.
B. 34.
C. 5.
D.
.
17
Câu 27. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
√
2a3 3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
6
3
Câu 29. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−∞; 1).
D. (−1; 1).
Trang 2/4 Mã đề 1
! x3 −3mx2 +m
1
Câu 30. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 31. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 11 cạnh.
Câu 32. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
8a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Câu 33. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. R.
Câu 34. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.
D. y0 = x + ln x.
C. y0 = 1 + ln x.
Câu 35. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.
C. 11.
D. 4.
Câu 36. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. .
D. 3.
2
2
x+3
Câu 37. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 38. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 39. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối tứ diện đều.
[ = 60◦ , S A ⊥ (ABCD).
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là
√
√
a3 2
a3 2
a3 3
3
.
B.
.
C. a 3.
D.
.
A.
4
12
6
1
Câu 41. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 42. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 3/4 Mã đề 1
A. Câu (I) sai.
B. Câu (II) sai.
C. Câu (III) sai.
D. Khơng có câu nào
sai.
0 0 0
Câu 43. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
20 3
14 3
.
B. 8 3.
.
D. 6 3.
A.
C.
3
3
Câu 44. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 45. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
B.
.
C.
.
D. 2a 2.
A. a 2.
2
4
x
Câu 46. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 18.
C. 12.
D.
.
2
x2 − 5x + 6
Câu 47. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.
D. −1.
Z 2
ln(x + 1)
Câu 48. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 0.
D. 1.
x−2
Câu 49. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. −3.
D. 1.
3
2n2 − 1
Câu 50. Tính lim 6
3n + n4
2
A. 1.
B. 0.
C. 2.
D. .
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4.
5.
D
6.
7. A
D
12. A
16.
B
17. A
18.
19. A
20. A
21.
23.
D
B
D
B
C
C
D
28.
D
30.
C
32.
C
34.
C
C
B
36.
37.
B
38.
D
40. A
C
42.
41. A
43.
45.
D
26.
35.
39.
D
24.
25. A
29.
C
22.
C
33.
D
14.
C
13.
31.
B
10. A
11. A
27.
D
8. A
9.
15.
B
D
D
44.
46.
B
47.
D
48. A
49.
D
50.
1
C
B
B