Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
1 − 2n
Câu 2. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. .
C. − .
D. .
3
3
3
1
Câu 3. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 4. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
C. 2a 6.
A. a 3.
B.
D. a 6.
2
Câu 5. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 5 mặt.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 6. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
Câu 7. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
3
2
Câu 8. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
√
Câu 9. Thể
√ tích của khối lập phương có cạnh bằng a 2
3
√
√
2a 2
A.
.
B. V = a3 2.
C. V = 2a3 .
D. 2a3 2.
3
π
Câu 10. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 2.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 4.
Câu 11. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 12. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −6.
C. −3.
D. 0.
log2 240 log2 15
Câu 13. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. 3.
D. −8.
Trang 1/4 Mã đề 1
2
Câu 14. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log2 3.
D.
π
Câu 15. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
3 π6
1 π
A.
e .
B. e 3 .
C. 1.
D.
2
2
Câu 16. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 9.
B. 27.
C. 8.
D.
√3
4
Câu 17. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
A. a 3 .
B. a 3 .
C. a 3 .
D.
Câu 18. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (−∞; −1).
1 − log3 2.
√
2 π4
e .
2
√
3 3.
5
a8 .
D. (1; +∞).
Câu 19. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 20. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.
√
√
4n2 + 1 − n + 2
bằng
Câu 21. Tính lim
2n − 3
3
A. 1.
B. 2.
C. .
2
2
Câu 22. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.
D. Năm mặt.
D. +∞.
D. −7.
Câu 23.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
12
4
6
2
[ = 60◦ , S O
Câu 24. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
19
17
19
0 0 0 0
0
Câu 25.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
!
!
!
4x
1
2
2016
Câu 26. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 1008.
D. T = 2016.
2017
Câu 27. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
Câu 28. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.
D. 2.
Câu 29. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 2/4 Mã đề 1
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.
C. Chỉ có (II) đúng.
!x
1
1−x
là
Câu 30. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log2 3.
B. log2 3.
C. − log3 2.
Câu 31.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
4
A.
.
B.
.
3
e
!n
1
C.
.
3
D. Chỉ có (I) đúng.
D. 1 − log2 3.
!n
5
D. − .
3
Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
c a2 + b2
a b2 + c2
abc b2 + c2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 33. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.
C. 6.
D. 12.
Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đôi.
1
Câu 35. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = R \ {1}.
D. D = (−∞; 1).
Câu 36. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
Câu 37. [12212d] Số nghiệm của phương trình 2
A. Vơ nghiệm.
B. 1.
x+2
Câu 38. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
Câu 39. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
x−3
.3 − 2.2
C. 2.
x−2
x−3
− 3.3
D. Vô nghiệm.
x−2
+ 6 = 0 là
D. 3.
C. 3.
D. 2.
C. y0 = 1 − ln x.
D. y0 = x + ln x.
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
24
16
48
48
x3 − 1
Câu 41. Tính lim
x→1 x − 1
A. 3.
B. +∞.
C. 0.
D. −∞.
Câu 42. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
2
4
12
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 43. Tìm m để hàm số y =
x+m
A. 26.
B. 34.
C. 67.
D. 45.
Câu 44. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 6.
D. 3.
Trang 3/4 Mã đề 1
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3
√
a 3
a 2
a 3
B.
A. a3 3.
.
C.
.
D.
.
2
2
4
tan x + m
Câu 46. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
π π
3
Câu 47. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.
Câu 48.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
1
Câu 49. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
4
12
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
D
4.
C
3.
C
5. A
6.
7. A
8.
D
10.
D
9.
D
11. A
D
14. A
15.
D
16.
17.
B
18.
19.
B
20. A
21. A
22.
23. A
24. A
25.
B
30. A
31.
C
32.
B
35. A
39.
B
B
C
28. A
C
37.
D
26.
C
29.
33.
C
12.
13.
27.
C
B
34.
C
36.
C
38.
C
B
D
40.
41. A
C
42.
D
43.
B
44.
D
45.
B
46.
D
47.
B
48.
B
49.
B
50.
B
1