Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn tập toán thptqg c3 (215)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.74 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
1


Câu 2. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 3. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
c a2 + b2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 4. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Năm mặt.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 5. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +



√ y.
2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
A. Pmin =
21
3
9
9
Câu 6. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

5
Câu 7. Tính lim
n+3
A. 2.

C. 3.

D. 0.

B. 1.

Câu 8. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 9. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
Trang 1/4 Mã đề 1


B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 10. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 24 m.
D. 16 m.
Câu 11. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 12. Tính lim
x→1

A. −∞.

x3 − 1
x−1


B. +∞.

C. 0.

D. 3.

Câu 13. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. β = a β .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
Câu 14. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 15. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3

−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
3
4
x−2 y+2 z−3
x y−2 z−3
=
.
D.
=
=
.
C. =
2
3
−1
2

2
2
x+1
Câu 16. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. 3.
C. .
D. .
4
3
d = 300 .
Câu 17. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.


3

a3 3
3a
3
A. V =
.
B. V = 3a3 3.
C. V = 6a3 .
D. V =

.
2
2
Câu 18. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
c+1
c+2
c+3
Câu 19. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
Câu 20. [2] Tổng các nghiệm của phương trình 3
A. 5.
B. 8.

C. Khối bát diện đều.

D.

3b + 3ac
.
c+2


D. Khối 12 mặt đều.

x2 −3x+8

= 92x−1 là
C. 6.

D. 7.

Câu 21. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
Trang 2/4 Mã đề 1


Câu 22. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3 3
a3
a3 3
3
A. a .

B.
.
C.
.
D.
.
9
3
3
Câu 23. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
6
2
Câu 24. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.

C. 3.
D. 7.
Câu 25.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Câu 26. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.


C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 27. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 5
a3 6
a3 15
3
A.
.
B.
.
C. a 6.
.
D.
3
3
3
Câu 28. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 29. Giá trị lớn nhất của hàm số y =
A. −2.


B. −5.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. 0.
D. 1.

Câu 30. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
18
6
Câu 31. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 2.


D. 1.

Câu 32. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {3; 4}.

D. {4; 3}.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác

√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
A. 2 3.
B. 6.
C. 2.
D. 2 2.

Câu 33. [3-1214d] Cho hàm số y =

Câu 34. Hàm số nào sau đây khơng có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x

C. y =


x−2
.
2x + 1

D. y = x4 − 2x + 1.
Trang 3/4 Mã đề 1


x2 − 5x + 6
x→2
x−2
B. 1.

Câu 35. Tính giới hạn lim
A. 5.

C. 0.

D. −1.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 36. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2

a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
12
24
24
Câu 37. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 38. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
B.
.
C. 26.
D. 2.
A. 2 13.

13
Câu 39. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 40. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 6.
D. 9.
2
2
Câu 41.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.
.
2

4
12

D.

3
.
4

Câu 42. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (−∞; 1).

D. (0; 2).

Câu 43. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

D. Khối bát diện đều.

C. Khối 20 mặt đều.

1 3
x − 2x2 + 3x − 1.
3
C. (1; 3).
D. (−∞; 1) và (3; +∞).


Câu 44. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (−∞; 3).

B. (1; +∞).

Câu 45. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 6%.
D. 0, 5%.
Câu 46. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.

D. 10 mặt.
2

2

Câu 47.
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất √
√ là
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
A. 2 2 và 3.

Câu 48. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 49. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Trang 4/4 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).
Câu 50. [4-1212d] Cho hai hàm số y =

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 5/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3.
5.

2.

B

B

4. A
D

6.

B

7.

D


8.

9.

D

10.

D
D

C

11.

B

12.

13.

B

14.

C

16.


C

15. A
17.

18.

D

19. A

20.

D

21. A

22.

D

C

23.

D

24.

B


25.

D

26.

B

28.

B

31.

B

27.

B

29.
32.

C
B

33. A

34.


C

35.

36.

C

37. A

38.

B

D

39. A

40. A

41.

B

42.

D

43.


B

44.

D

45.

B

46. A

47. A

48.
50.

D

49. A

B

1



×